
S E C O N D O R D E R M E T H O D S F O R N E U R A L N E T W O R K O P T I M I Z AT I O N

jan niclas hardtke

Geboren am 27.Oktober 1999 in Troisdorf

Bachelor Thesis Informatik

Betreuer: Dr. Moritz Wolter
Zweitgutachter: Prof. Dr. Reinhard Klein

Institut für Informatik II – Visual Computing

Mathematisch-Naturwissenschaftliche Fakultät
Universität Bonn - High Performance Computing and Analytics Lab

October 2024

A C K N O W L E D G M E N T S

I would like to thank my thesis supervisor, Moritz Wolter, for his consistent guid-
ance and support throughout this project. He was always available to answer my
questions and provided valuable feedback whenever I needed it. I would also like
to express my gratitude to my friend Christoph Wolff, who always kept me updated
with the latest AI news he discovered on Twitter.

iii

C O N T E N T S

1 Theoretical foundations 1

1.1 Foundations of Differential Calculus 1

1.1.1 Derivatives for Functions of a Single Variable 1

1.1.2 Partial Derivatives 1

1.1.3 The Gradient 1

1.1.4 The Jacobian Matrix 2

1.1.5 The Hessian Matrix 2

1.2 Introduction to Optimization 3

1.3 First-order Optimization Algorithms 5

1.3.1 Gradient Descent 5

1.3.2 Empirical Risk Minimization (ERM) [7] 5

1.3.3 Stochastic Gradient Descent [39] 6

1.3.4 Momentum [17] 7

1.3.5 RMSProp [17] 7

1.3.6 Adam [22] 8

1.3.7 AdaBelief [45] 9

1.4 Second-order Optimization Algorithms 10

1.4.1 The Newton method 10

1.4.2 DFP & BFGS [28] 13

1.4.3 AdaHessian [43] 14

1.4.4 Apollo [25] 15

1.5 Introduction to artificial Neural Networks [13] 17

1.5.1 The artificial Neuron [13] 19

1.5.2 The Multi-Layer Perceptron (MLP)[17] 19

1.5.3 Training of Neural Networks [17] 20

1.5.4 Decoupled Weight Decay [23] 24

1.5.5 Exact Calculation of the Hessian Matrix for MLPs [5] 25

2 Numerical Evaluations 28

2.1 Overview of Software and Tools Used 28

2.2 Image Classification 29

2.2.1 CIFAR-10 29

2.2.2 Tiny ImageNet 33

2.3 Machine Translation 34

2.3.1 WMT-14 35

3 Hessian Approximization Quality and SApollo 39

3.1 Hessian Approximization Quality 39

3.2 The SApollo Optimizer 41

4 Conclusion and Future Directions 48

a Appendix 49

a.1 Appendix 49

iv

L I S T O F F I G U R E S

Figure 2.1 Evaluation of optimizers on CIFAR-10 using ResNet-110 with
the milestone learning rate scheduler, where hyperparameters
are held constant across all optimizers. For better visualiza-
tion we applied a polynomial transformation, with x̂ = xα

and α = 5, for every x ∈ D in the output data D. 30

Figure 2.2 Evaluation of optimizers on CIFAR-10 using ResNet-110 with
the milestone learning rate scheduler, where hyperparame-
ters are choosen optimally across all optimizers.For better
visualization we applied a polynomial transformation, with
x̂ = xα and α = 5, for every x ∈ D in the output data D.
31

Figure 2.3 Evaluation of optimizers on CIFAR-10 using ResNet-110 with
the cosine annealing learning rate scheduler, where hyperpa-
rameters are choosen optimally across all optimizers. For
better visualization we applied a polynomial transformation,
with x̂ = xα and α = 5, for every x ∈ D in the output data
D. 32

Figure 2.4 Evaluation of optimizers on TinyImageNet using ResNet-18

with the milestone learning rate scheduler, where hyperpa-
rameters are held constant across all optimizers 35

Figure 2.5 Evaluation of optimizers on TinyImageNet using ResNet-18

with the milestone learning rate scheduler, where hyper-
parameters where hyperparameters are choosen optimally
across all optimizers. 36

Figure 2.6 Evaluation of optimizers on TinyImageNet using ResNet-18

with the cosine learning rate scheduler, where hyperparame-
ters where hyperparameters are choosen optimally across all
optimizers. 37

Figure 2.7 Evaluation of optimizers on WMT-14 using the Transformer
architecture with the InverseSquareRootLR learning rate
scheduler. Hyperparameters are individually tuned for opti-
mal performance. 38

Figure 3.1 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding op-
timizer approximations on a big batch (1028 samples). Op-
timizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the net-
work’s weights. For the corresponding analysis on biases,
please refer to Figure A.3. 41

v

Figure 3.2 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding op-
timizer approximations on a small batch (124 samples). Op-
timizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the net-
work’s weights. For the corresponding analysis on biases,
please refer to Figure A.2. 42

Figure 3.3 The log loss of the model during training, y-axis, after each
update step, x-axis, while training with small- (left) and big
batches (right) of training data. 42

Figure 3.4 The implementation of SApollo(top) and Apollo(bottom) in
PyTorch 46

Figure 3.5 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding opti-
mizer approximations on a small batch (124 samples). Opti-
mizer updates are denoted on the x-axis. 47

Figure 3.6 Evaluation of SApollo on CIFAR-10 using ResNet-110 with
the cosine annealing learning rate scheduler. 47

Figure A.1 Evaluation of optimizers on CIFAR-10 using ResNet-110 with
the cosine annealing learning rate scheduler, where hyperpa-
rameters are held constant across all optimizers.For better
visualization we applied a polynomial transformation, with
x̂ = xα and α = 5, for every x ∈ D in the output data
D. 49

Figure A.2 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding op-
timizer approximations on a small batch (124 samples). Op-
timizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the net-
work’s biases. 50

Figure A.3 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding op-
timizer approximations on a small batch (124 samples). Op-
timizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the net-
work’s biases. 51

Figure A.4 The cosine similarity (in degrees), y-axis, between the cal-
culated batch Hessian diagonal and the corresponding op-
timizer approximations on a small batch (124 samples). Op-
timizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the net-
work’s biases. 52

vi

list of tables vii

L I S T O F TA B L E S

Table 2.1 Accuracy (%) of different optimizers across CIFAR-10 and
TinyImageNet, evaluated on 3 runs (CIFAR-10) 33

Table 2.2 Time (epochs) until convergence (see 4) of the training loss
across CIFAR-10 and TinyImageNet 34

Table 2.3 Cost, Speed, and Memory Usage of Different Optimizers
Across Various Datasets 38

Table A.1 Hyperparameter settings for CIFAR-10. Values in paren-
theses indicate configurations used for individual best-case
evaluations. 50

Table A.2 Hyperparameter settings for TinyImageNet. Values in paren-
theses indicate configurations used for individual best-case
evaluations. 51

Table A.3 Hyperparameter settings for WMT-14. 52

Table A.4 Hyperparameter settings for curvature approximation qual-
ity. Values in parentheses are used in the SApollo compari-
son 53

Table A.5 Hyperparameter settings for comparison between SApollo
and Apollo 53

I N T R O D U C T I O N

Optimization techniques play a crucial role in science and engineering, as they
enable the refinement of models and solutions by iteratively minimizing or max-
imizing objective functions. This process ensures that solutions are as effective
and efficient as possible, impacting a wide range of applications, from designing
engineering systems to refining algorithms in computational research.
In the field of numerical optimization, we differentiate between so-called first-order
and second-order optimization methods, where the former refers to solely utilizing
first-order, i.e., gradient information, for the task of optimization.

Second-order optimization methods utilize both the gradient and Hessian infor-
mation, providing deeper insights into the nature of the loss landscape.
In traditional numerical optimization problems, second-order methods are essential
for efficient algorithm design as they have provably better convergence properties
than first-order methods. Techniques such as Newton’s method utilize the Hessian
for rapid convergence.
Algorithms in this family often use a preconditioning matrix to transform the
gradient before applying each step. Classically, the preconditioner is the matrix of
second-order derivatives (the Hessian) in the context of exact deterministic opti-
mization[1].
In machine learning, the direct application of second-order information is unfor-
tunately limited due to the computational intensity and storage requirements of
handling full Hessian matrices, particularly since today’s models often involve
billions of trainable parameters. While first-order methods like (stochastic) gradient
descent (SGD) are preferred for the training of today’s models because of their
simplicity and reduced computational demands, they often fall short in convergence
speed and sensitivity to hyperparameter settings.
Recent practice of training large models even suggests that the utility of common
first-order methods is quickly reaching a plateau, as their time-per-step is already
negligible. Consequently, the only way to accelerate training is by reducing the
number of steps taken by the optimizers to reach a solution[1].
Therefore integrating Hessian-based information can potentially improve optimiza-
tion efficiency by drastically increasing training convergence. In this thesis, we
will focus on two novel approaches for neural network optimization: AdaHessian
[43] and Apollo, as they are optimizers that incorporate second-order information
by estimating diagonal Hessian elements to adjust learning rates. This work will
provide an in-depth analysis of both AdaHessian and Apollo, evaluating their per-
formance in comparison to other optimizers, with focus on the quality of Hessian
approximation. Additionally, we aim to make the following contributions:

1. Examining whether the potential benefits of these optimizers, in terms of faster
convergence and improved generalization, justify the increased computational
costs.

viii

list of tables ix

2. Investigating whether the claimed advantage of these optimizers in providing
a better approximation of the Hessian diagonal holds up when compared to
simpler approximations made by first-order methods.

3. If the claim in 2 does not hold, investigate the reasons behind the optimizer’s
failure and propose a solution.

We begin by providing a general overview of the theoretical foundations of op-
timization and neural network training in Chapter 1. This includes a detailed
explanation of well-known first-order optimizers, as well as Newton’s Method,
and the motivation behind Apollo and AdaHessian. The chapter concludes with
an overview of the neural network training process, along with manual methods
for calculating the Hessian matrix using forward and backward propagation. In
Chapter 2, we evaluate each optimizer on multiple datasets, including tasks in
both vision and translation. Additionally, we measure the resource footprint of
each optimizer to assess their real-world applicability. In Chapter 3, we assess the
quality of the Hessian approximation for both second-order and selected first-order
optimizers using a small convolutional neural network. We conclude our work
by introducing the SApollo optimizer, which aims to address issues related to the
implementation of Apollo.

1
T H E O R E T I C A L F O U N D AT I O N S

1.1 foundations of differential calculus

In this section, we explore the fundamental concept of the derivative. In mathemat-
ics, a derivative measures the rate at which a function changes as its input changes.
Simply put, it represents the slope of the tangent line to the function’s graph at
any given point. For a function f (x) of a single variable x, the derivative is often
written as f ′(x) or d f

dx , and it quantifies how much the function changes with a
small change in x.

1.1.1 Derivatives for Functions of a Single Variable

Let f : R→ R be a single-variable function. The derivative of the function f at a
point x ∈ Rn denoted as f ′(x), is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

h ∈ R. (1.1)

1.1.2 Partial Derivatives

Consider a function f : Rn → R. The partial derivative of f with respect to the
variable xi at a point x = (x1, x2, . . . , xn) ∈ Rn is defined as

∂ f
∂xi

(x) = lim
h→0

f (x1, . . . , xi + h, . . . , xn)− f (x1, . . . , xi, . . . , xn)

h
, h ∈ R. (1.2)

Assuming this limit exists, this definition encapsulates how f responds to in-
finitesimal changes in xi, while keeping its other variables fixed.

1.1.3 The Gradient

Let f : Rn → R be a function that is differentiable at a point x ∈ Rn. Than the
gradient of f at x ∈ Rn, that is denoted as ∇ f (x), is the vector of all its first partial
derivatives

∇ f (x) =
(

∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
x ∈ Rn. (1.3)

The gradient vector points in the direction of the greatest rate of increase of the
function, and its magnitude represents the rate of change in that direction [3].

1

2 theoretical foundations

1.1.4 The Jacobian Matrix

Let f : Rn → Rm be a vector-valued function. The Jacobian matrix Jf of f is an m× n
matrix that contains all first-order partial derivatives of the component functions fi
with respect to the input variables xj ∈ R, where 1 ≤ i ≤ m, 1 ≤ j ≤ n. It is defined
as follows

Jf =

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn

 . (1.4)

Each element ∂ fi
∂xj

of the Jacobian matrix represents the partial derivative of the
i-th component function fi with respect to the j-th input variable xj. Later, we will
see that the Jacobian matrix plays a crucial role in the backpropagation algorithm
used for optimizing neural networks.

1.1.5 The Hessian Matrix

Suppose f : Rn → R is function that is an at least twice differentiable and takes as
input a vector x ∈ Rn and outputs a scalar f (x) ∈ R. Then the Hessian matrix H of
f is given by

H f (x) =

∂2 f
∂x2

1

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
· · · ∂2 f

∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

· · · ∂2 f
∂x2

n

 . (1.5)

Schwarz’s Theorem states states the following: Let U ⊆ Rn be an open set and
f : U → R be at least k-times partially differentiable. If all k-th partial derivatives in
U are at least continuous, then f is k-times totally differentiable. In particular, the
order of differentiation in all l-th partial derivatives with l ≤ k is irrelevant[2].
We can therefore conclude that H is in fact a symmetric real-valued n× n matrix,
meaning H = HT.

1.1.5.1 Eigenvalues of the Hessian

Because H is symmetric, there exist n lineraly independent eigenvectors, such that
H can be factorized as

H = QΛQ−1 (1.6)

where Q is an n × n matrix whose ith column is the eigenvector qi of H, and Λ is a
diagonal matrix whose elements are the corresponding eigenvalues [21].

1.2 introduction to optimization 3

The eigenvalues of the Hessian matrix play a crucial role in numerical optimization
as they provide unique insight into the curvature of the function at a given point.
For example, a given point is a local minimizer if all λi > 0 or a local maximizer if
all λi < 0. If there exist eigenvalues of different sign, than a given point presents a
saddle point which are particularly challenging in the context of machine learning
as optimizers as SGD often times get stuck at these regions [7].

1.1.5.2 Matrix definiteness

Let M be an n× n symmetric real matrix with n ∈ R, than the following statements
hold:

M is positive-definite ⇐⇒ xTMx > 0 for all x ∈ Rn \ {0}

M is positive semi-definite ⇐⇒ xTMx ≥ 0 for all x ∈ Rn

M is negative-definite ⇐⇒ xTMx < 0 for all x ∈ Rn \ {0}

M is negative semi-definite ⇐⇒ xTMx ≤ 0 for all x ∈ Rn

Additionally we define the positive semi-definite order of matrices by A ⪯ B⇐⇒
xT(B− A)x ≥ 0 ∀x ∈ Rn, were A, B ∈ Rn×n are symmetric matrices.

1.1.5.3 Singular Matrix

Let M be an n× n symmetric matrix with n ∈ R, then M is called singular if and
only if it’s determinant is 0. Therefore M−1 does not exist, meaning M does not
have an inverse.

1.1.5.4 Ill-conditioned Matrices

A matrix M ∈ Rn×m is called ill-conditioned when its condition number is high. This
implies that small changes in its input (or elements) result in disproportionately
large changes in its output. The condition number of a matrix M, is defined as

κ(M) =
σmax(M)

σmin(M)
, (1.7)

where σmax and σmin are the largest and smallest singular values (square roots
of non-negative eigenvalues [35]) of M respectively. M is called ill-conditioned if
κ(M)≫ 1 [33].

1.2 introduction to optimization

Optimization is a crucial tool used in nearly all areas of decision science, engi-
neering, economics, machine learning, and physical sciences [28]. The process of

4 theoretical foundations

optimization begins by identifying an objective, which is a measurable indicator of
the performance of a model or system. Common objectives in optimization often
involve maximizing or minimizing quantities like profit, cost, or time. These objec-
tives depend on system characteristics known as variables or parameters. The goal
of optimization is to identify the values of the set of variables or parameters that
minimize or maximize a given objective. The parameters often face some constraints,
that are necessary to arrive at a practical solution. Examples for this might be the
non-negativity of the interest rate on a loan or the electron density in a molecule[28].
The process of building such an objective-(function), choosing its parameters and
constraints is called modelling. Constructing an effective model is often the most
important step in solving a given problem. If the model is too simple, it might not
capture the core of the problem. On the other hand, if it’s overly complex, it may
lead to difficult-to-compute solutions and become prone to issues like overfitting,
which will be covered in later sections.

Mathematically, a model and its constraints may be defined as followsAs defined in [28]

min
x∈Rn

f (x) subject to ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I .

In this example model we want to minimize the scalar-valued objective function f
given a vector of variables or parameters x, where x has to satisfy the scalar-valued
constraint functions ci, with sets of indices E and I .

The set of parameters that serve as optimal solutions to a given model are
often denoted as x∗. Depending on whether the problem involves maximization or
minimization, these parameters are also referred to as maximizers or minimizers,
respectively. Once the model has been formulated, an optimization algorithm can
be used to find its solution, usually with the help of a computer [28]. The choice of
an optimization algorithm heavily relies on the model’s characteristics. Factors like
linearity, differentiability, convexity, and dimensionality influence whether methods
like simplex (for linear models) or gradient descent (for differentiable non-linear
models) are suitable[34].
In this work, we focus on unconstrained nonlinear optimization problems, which
involve finding the optimal values of a nonlinear objective function without explicit
constraints on the variables. These types of problems are the most frequently
encountered in modern machine learning models, particularly in the realm of deep
learning [17]. For these nonlinear optimization problems, we often differentiate
between first-order and second-order optimization techniques. First-order methods,
like (stochastic) gradient descent, use only the gradient information of the loss
landscape to guide their search for a local minimizer of the objective function [21],
while second-order methods, such as Newton’s method, utilize both the gradient
and the Hessian matrix to better approximate the curvature, leading to more
efficient optimization but with increased computational cost [43]. In the following
sections, we explore various optimization algorithms within first- and second-
order techniques, highlighting their strengths and weaknesses. We also provide
a foundational overview of neural networks, focusing on how these optimization
strategies are applied to train them.

1.3 first-order optimization algorithms 5

1.3 first-order optimization algorithms

First-order methods are optimization techniques that rely on gradient information
to guide the search for a function’s minimum or maximum. They are termed "first-
order" because they only use first derivatives 1.1.3 to update parameters. They are
computationally efficient and work well with large-scale problems, especially in
machine learning [17].

1.3.1 Gradient Descent

Gradient descent (GD) is one of the most established first-order optimization
algorithms. GD iteratively adjusts model parameters to minimize a given loss
function by following the negative gradient direction [38]. Since the gradient is a
vector indicating the direction of steepest ascent of the loss function, adjusting the
parameters in the direction of the negative gradient will result in a decrease in the
function’s value [38].
Formely we write:
Let L : Rd → R be a differentiable function, such that arg min L ̸= ∅. Let θ0 ∈ Rd

and γ > 0 be a step size. The Gradient Descent (GD) algorithm defines a sequence
(θt)t∈N satisfying:

θt+1 = θt − γ∇θL(θt). (1.8)

The step size, denoted as γ, is often called the learning rate and is a crucial hyper-
parameter when training a model. An incorrect choice of γ can yield significantly
different outcomes: if too large, the step size may overshoot the minimum, resulting
in oscillation or divergence; if too small, progress will be slow, requiring many
iterations to reach convergence. [42]

1.3.2 Empirical Risk Minimization (ERM) [7]

In machine learning, optimization problems naturally arise due to the formulation
of prediction models and the associated loss functions. These are typically used to
evaluate measures like the expected and empirical risk, which practitioners aim to
minimize [7]. To formalize this, let’s define a family of model functions for some
given f (·; ·) : Rdx ×Rd → Rdy as follows:

F := { f (·; θ) : θ ∈ Rd}. (1.9)

The set F represents a collection of functions parameterized by a parameter
vector w that determine the prediction functions in use. Now assume a loss function
l : Rdy ×Rdy → R, which, given an input-output pair (x, y) and a model f ∈ F,
yields the loss l(f (x; w), y). The most gratifying behavior for such a prediction
function is to minimize the expected loss between any input-output pair. For that,
let’s assume that losses are measured with respect to a probability distribution
P(x, y) with P : Rdx ×Rdy → [0, 1], then we could write the expected risk as

R(θ) =
∫

Rdx×Rdy
l(f (x; θ), y)dP(x, y) = E[l(f (x; θ), y)]. (1.10)

6 theoretical foundations

Minimization of R(θ) would ensure that the expected loss for the resulting model
f (·; w) over all possible (x, y) is minimal.
In practice, however, this is unfeasible when one lacks complete information about
P. Instead, one seeks to solve a problem by estimating R. In supervised learning, a
set of n ∈N independently drawn input-output samples {(xi, yi)}n

i=1 ⊆ Rdx ×Rdy

is typically available. In machine learning specifically, we refer to this set of data as
the training data. From these samples, the empirical risk function Rn : Rd → R is
defined as:

Rn(θ) =
1
n

n

∑
i=1

l(f (xi; θ), yi) (1.11)

where l is the loss function that measures the discrepancy between the prediction
f (xi; θ) and the actual output yi. In standard gradient descent, it is actually this
empirical risk function we strive to minimize, leading to the following gradient
update step:

θt+1 = θt − γ∇Rn(θt). (1.12)

The gradient descent algorithm continues to iterate through this update step
until a convergence criterion is met, such as a maximum number of iterations or an
acceptable error tolerance.

1.3.3 Stochastic Gradient Descent [39]

Since standard gradient descent requires the evaluation of the gradient over the
whole set of training data, large training sets can quickly become computationally
expensive. Another issue with standard gradient descent optimization methods
is that they don’t give an easy way to incorporate new data in an ’online’ setting.
Stochastic Gradient Descent (SGD) addresses both of these issues by following
the negative gradient of the objective after seeing only a single or a few training
examples. Therefore approximating the true gradient of Rn(θt) by the gradient of a
single or a few data points B ⊆ {(xi, yi)}n

i=1 ⊆ Rdx ×Rdy .

∇Rb(θ) =
1
|B| ∑

{x̂,ŷ}∈B
∇l(f (x̂; θ), ŷ) (1.13)

with B ∈N beeing the sample size or batch size. Leading to the following update
rule [39]

θt+1 = θt − γ∇Rb(θ). (1.14)

It can be shown that, this estimate ∇Rb(θ) provides an unbiased estimator of the
true gradient [15], satisfying

E[∇Rb(θ)] = ∇Rn(θ). (1.15)

While this introduces noise into the gradient estimates, repeated updates over many
mini-batches allow SGD to approximate the true gradient descent path.

1.3 first-order optimization algorithms 7

1.3.4 Momentum [17]

While Stochastic Gradient Descent (SGD) is a very effective algorithm for opti-
mization, its convergence rates can often be slow. To tackle the problem of slow
convergence, the method of momentum [30] was introduced. Momentum has the
benefit of leading to faster convergence even in settings with high curvature or
noisy gradients [17]. The momentum algorithm introduces an additional variable v,
called the velocity, which defines the direction and speed at which the parameters
move through parameter space [17]. The update rule for SGD with momentum is
given by

vt = βvt−1 + (1− β)∇θ J(θt),

θt+1 = θt − ηvt.

where

• vt is the velocity vector at iteration t,

• β ∈ [0, 1) is the momentum term, typically set between 0.9 and 0.99,

• ∇θ J(θt) is the gradient of the loss function at iteration t.

The hyperparameter β determines how quickly the contributions of previous gradi-
ents exponentially decay. Therefore, the larger β is, the more previous gradients
affect the next update direction. With this exponentially weighted summation, we
can avoid the gradient successively changing sign and jumping around, because
the moving average smooths out the updates by considering the influence of past
gradients. This results in a more stable and consistent direction of the gradient
descent [17].

1.3.5 RMSProp [17]

RMSProp (Root Mean Square Propagation) [16] is an adaptive learning rate opti-
mization algorithm that adjusts the learning rate for each parameter based on the
magnitude of recent gradients. It works by maintaining an exponential moving
average of the past squared gradients to obtain curvature information. The scalar
learning rate then gets divided by this moving average and the resulting vector is
mulplied with the current gradient. This results in a parameter wise scaling of the
learning rate, increasing it in low and decreasing in high curvature regions. This
helps to stabilize the training process and reduce oscillations [17]. The RMSProp
update rules are given by: [17]

vt = βvt−1 + (1− β)∇θ J(θt)
2,

θt+1 = θt −
η√

vt + ϵ
∇θ J(θt),

where

8 theoretical foundations

• vt is the exponentially weighted moving average of the squared gradients at
time step t,

• β ∈ [0, 1) is the decay rate, typically set to around 0.9,

• η is the learning rate,

• ∇θ J(θt) is the gradient of the loss function at iteration t,

• ϵ is a small constant (e.g., 10−8) to prevent division by zero.

1.3.6 Adam [22]

Adam (Adaptive Momentum) is one of the most well known and popular optimiza-
tion algorithms for neural networks today. It builds upon the ideas of Momentum
and adaptive scaling of the learning rate, as it combines both the ideas of Mo-
mentum and RMSProp. Adam calculates an exponential moving average not only
from the gradients, but also the squared gradients. It therefore introduces two
hyperparameters β1 ∈ [0, 1) and β2 ∈ [0, 1) which determine the influence of past
(squared) gradients into the moving average

mt = β1mt−1 + (1− β1)∇θ J(θt),

vt = β2vt−1 + (1− β2)∇θ J(θt)
2,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

θt+1 = θt −
η√

v̂t + ϵ
m̂t,

where

• mt is the velocity vector at iteration t,

• vt is the exponentially weighted moving average of the squared gradients at
time step t,

• β1 ∈ [0, 1) is the decay rate, used for the first order moment,

• β2 ∈ [0, 1) is the decay rate, used for the second order moment,

• m̂t is the bias corrected first order moment at t,

• v̂t is the bias corrected second order moment at t,

• η is the learning rate,

• ∇θ J(θt) is the gradient of the loss function at iteration t,

• ϵ is a small constant (e.g., 10−8) to prevent division by zero.

1.3 first-order optimization algorithms 9

As we can see, the Adam algorithm is very similar to RMSProp, with the exception
that it uses a first-order moment estimate (mt) in addition to the second-order
moment estimate (vt). Unlike RMSProp, which directly uses the current gradient
∇θ J(θt), Adam incorporates bias-corrected estimates to improve the stability of the
training process. Adam initializes m0 = 0 and v0 = 0. Consequently, mt and vt are
biased towards zero, especially when the decay rates β1 and β2 are close to 1 [12].
This bias can lead to very large step sizes in the early stages of training [17]. To
counteract this, Adam applies bias correction by dividing mt and vt by (1− βt

1)

and (1− βt
2), respectively, ensuring that the gradients at earlier steps are accurately

represented [12].

1.3.7 AdaBelief [45]

AdaBelief [45] is a novel optimizer that builds upon the Adam algorithm. The core
concept of AdaBelief is to adapt the step size based on the "belief" in the current
gradient direction. This "belief" is derived from the proximity of the current gradient
estimate to the exponential moving average of past gradients, denoted as mt. If the
current gradient estimate is close to mt, we have a higher confidence in the gradient
estimate and take a larger step in the proposed direction. Conversely, if the current
gradient estimate significantly deviates from mt, we take a much smaller step.

This adaptive mechanism is achieved by using the squared difference between
the gradient and the exponential moving average, rather than the gradient itself, in
the calculation of the second moment estimate vt [46]

mt = β1mt−1 + (1− β1)∇θ J(θt),

st = β2st−1 + (1− β2)(∇θ J(θt)−mt)
2 + ϵ,

m̂t =
mt

1− βt
1

,

ŝt =
st

1− βt
2

,

θt+1 = θt −
η√

ŝt + ϵ
m̂t,

where

• mt is the velocity vector at iteration t,

• st is the exponentially weighted moving average of the squared difference of
the gradient and mt at time step t,

• β1 ∈ [0, 1) is the decay rate, used for the first order moment,

• β2 ∈ [0, 1) is the decay rate, used for the second order moment,

• m̂t is the bias-corrected first order moment at t,

• ŝt is the bias-corrected second order moment at t,

10 theoretical foundations

• η is the learning rate,

• ∇θ J(θt) is the gradient of the loss function at iteration t,

• ϵ is a small constant (e.g., 10−8) to prevent division by zero.

Following this approach, AdaBelief achieves fast convergence, training stability, and
good generalization results, comparable to Stochastic Gradient Descent (SGD) [46].

1.4 second-order optimization algorithms

This section examines optimization algorithms utilizing second-order information,
particularly the Hessian matrix (Equation 1.5). We begin by examining the classical
Newton method, which serves as a foundation for understanding the motivation for
approximating the Hessian matrix in subsequent algorithms. Our discussion then
progresses to established second-order optimization methods, including the pop-
ular Broyden-Fletcher-Goldfarb-Shanno (BFGS[10]) and Davidon-Fletcher-Powell
(DFP[17]) quasi-Newton algorithms. We then shift our analysis to recent advance-
ments in the field like AdaHessian[43] and Apollo[25], which are algorithms for
Hessian diagonal approximation, that are particularly useful in the context of
neural network optimization. Given their central role in this work, we provide a
more comprehensive examination of AdaHessian and Apollo compared to the other
algorithms discussed.

1.4.1 The Newton method

Newton’s method forms the basis of second-order optimization algorithms that aims
to find the local minimum or maximum of a differentiable function by iteratively
improving an initial estimate. The basic idea is to use a Taylor series expansion
to approximate the function by a paraboloid at a given point. The algorithm then
identifies the minimum of this paraboloid, which provides a direction vector that
can guide subsequent algorithms, such as line search, towards a local minimum or
maximum.In the following we will express this mathematically.
Let f be the function we wish to optimize. Suppose f : Rn → R is continuously
differentiable and that ∆x ∈ Rn then we have that

f (x + ∆x) ≈ f (x) +∇ f (x)T∆x +
1
2

∆xT∇2 f (x)∆x (1.16)

This follows from the second-order Taylor expansion with x ∈ Rn choosen as the
expansion point [28].
As previously mentioned, this function approximates a paraboloid. To find the
minimizer of this approximation we differentiate with respect to ∆x and set the
gradient to zero.

d
d∆x f (x + ∆x) ≈ ∇ f (x) +∇2 f (x)∆x = 0

⇐⇒ ∆x = −(∇2 f (x))−1∇ f (x)
(1.17)

1.4 second-order optimization algorithms 11

From this, we can conclude that ∆x represents the vector offset from the current
position. This leads us to the following algorithm, which implements the Newton
update rule

xk + ∆x = xk − (∇2 f (x))−1∇ f (x), k ∈N. (1.18)

Here, xk denotes the current position, while xk + ∆x denotes the next position in
the algorithm’s path. Therefore, we set xk + ∆x = xk+1 and H = (∇2 f (x))−1, which
yields the Newton update step [28]

xk+1 = xk −H f (xk)
−1∇ f (x), k ∈N. (1.19)

This iterative process ensures that each step moves in the direction that minimizes
the function f based on its local curvature and gradient.

In practice however the pure Newton method does not necessarily converge [28].
There are several factors that contribute to this behavior, which can be categorized
as follows:

• Non-Convex Function: The Newton method relies on a second-order Taylor
series expansion to approximate the function near the current point as a
paraboloid. In highly non-covex settings however this approximation might
not reflect the function’s true behavior in the neighbourhood of the expansion
point. This way finding the minimum of the paraboloid might actually lead
to a point that increases the function value.[21]

• Singular Hessian Matrix : In order for Newton’s method to lead to a local
minimum, the Hessian matrix ∇2 f (x) must be positive-definite at each step. If
the Hessian has mixed eigenvalues or is not positive-definite, the steps may
lead away from a minimum. BFGS (Broyden–Fletcher–Goldfarb–Shanno) is a
popular quasi-newton optimization algorithm that solves this problem of non
positive-definite Hessians, by iteratively approximating the inverse Hessian
with a rank-2 update formula, to preserve the non singular property of the
Hessian (see 1.4.2) .[28]

• Sensitive to Initial Point: The choice of initial point x0 can greatly affect the
convergence and accuracy of Newton’s method. A good initial value should
be close to the actual minimizer. Choosing a poor initial value can lead to
divergent or inaccurate results, as the newton method converges and diverges
quadratically.[28]

1.4.1.1 Proof of Convergence [43]

We conclude this section on the Newton method by a proof of its convergence
in a strongly convex and strictly smooth setting. This proof serves as a reference
for our subsequent discussion, where we argue that using only the diagonal of
the Hessian inverse also yields a convergent algorithm under strongly convex and
strictly smooth conditions. Although we refer to [43] for this proof, it was originally
described by [8].

12 theoretical foundations

Theorem (Quadratic Convergence of Newton’s Method). Let f : Rd → R be a
twice continuously differentiable, strongly convex and strictly smooth function. Then, the
Newton update (see 1.19), yields a quadratically converging algorithm with the following
guarantee:

f (θt+1)− f (θt) ≤ −
α

2β2 ∥∇ f (θt)∥2, θ ∈ Rd

where ∇ f (θt) denotes the gradient at θt.

Proof
As f is twice continuously differentiable, strongly convex, and strictly smooth, we
can state:

∃α, β > 0 : αI ⪯ ∇2 f (θ) ⪯ βI, ∀θ ∈ Rd, (1.20)

where I is the identity matrix, α is the strong convexity parameter (satisfying
∃α > 0 : αI ⪯ ∇2 f (θ), ∀θ ∈ Rd) [41], and β is the strict smoothness parameter
(satisfying ∃β > 0 : ∇2 f (θ) ⪯ βI, ∀θ ∈ Rd) [41]. While ⪯ denotes the positive
semidefinite ordering of matrices (see 1.1.5.2).

Now define a function λ(θt) =
(

gT
t H−1

t gt

)1/2
and ∆θ = H−1gt, where gt is the

gradient at step t. Given the β-smoothness property of f , we can infer that

f (θt − η∆θt) ≤ f (θt) + gT
t ((θt − η∆θt)− θt)

+
β

2
∥(θt − η∆θt)− θt∥2

2

= f (θt)− ηgT
t ∆θt +

η2β

2
∥∆θt∥2

2.

(1.21)

Now λ(θt)2 = gT
t H−1

t gt = ∆θT
t Ht∆θt, as Ht is symmetric, and gT

t ∆θt = λ(θt)2.
Because of the strong convexity of f (see 1.20) we get

∆θT
t (Ht − αI)∆θt ≥ 0⇐⇒ ∆θT

t Ht∆θt ≥ α∥∆θt∥2, (1.22)

thus ∥∆θt∥2 ≤ 1
α ∆θT

t Ht∆θt =
1
α λ(θt)2. Now putting everything together

f (θt − η∆θt) ≤ f (θt)− ηλ(θt)
2 +

η2β

2α
λ(θt)

2. (1.23)

Setting the stepsize η = a
β and expanding, it follows

f (θt − η∆θt) ≤ f (θt)−
1
2

ηλ(θt)
2. (1.24)

We follow 1.22 and since 1
β I ⪯ H−1

t , we get

λ(θt)
2 = gT

t H−1
t gt ≥

1
β
∥gt∥2, (1.25)

with which we finally arrive at the claim

f (θt − η∆θt)− f (θt) ≤ −
1

2β
η∥gt∥2 = − a

2β2 ∥gt∥2. (1.26)

1.4 second-order optimization algorithms 13

1.4.2 DFP & BFGS [28]

Now that we know why the Hessian is a very useful quantity for optimization, we
will take a look at how we can approximate it, as exact calculation is infeasible for
most large-scale problems. The Davidon-Fletcher-Powell (DFP[17]) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS[10]) algorithms are so-called quasi-Newton algo-
rithms that use a positive definite approximation of the Hessian. In the following, we
cover the main ideas of DFP and BFGS. We start by introducing the quasi-Newton
update formula,

xk+1 = xk − B−1
k ∇ f (xk), k ∈N, (1.27)

where Bk is the Hessian approximation at timestep k [28]. From this, we can derive
the secant equation,

Bksk = yk, (1.28)

where yk = ∇ f (xk+1) −∇ f (xk) and sk = xk+1 − xk. We cover the derivation of
these in full detail in 1.4.4. By multiplying the above with sT

k , we can conclude, that
if sT

k yk > 0, known as the curvature condition, holds, there exists a Bk with positive
curvature along sk, meaning sT

k Bksk > 0 (see 1.1.5.2).

Bk+1 = min
B
∥B− Bk∥ s.t. B = BT, Bsk = yk (1.29)

When using the Frobenius norm for this optimization problem, we get a unique
solution for Bk+1 with,

Bk+1 =
(

I − ρkyksT
k

)
Bk

(
I − ρkskyT

k

)
+ ρkykyT

k , (1.30)

where ρk = 1
yT

k sk
. This update formula is usually referred to as the DFP updating

formula [14]. As we need the inverse Ck+1 := B−1
k+1 for performing the Newton step

(see 1.19), one can employ the Sherman–Morrison–Woodbury formula, defined as

(A + uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
A ∈ Rn×n, u, v ∈ Rn, (1.31)

to show by expanding and subsequently rearranging 1.30, that

Ck+1 = Ck −
CkykyT

k Ck
yT

k Ckyk
+

sksT
k

yT
k sk

, (1.32)

which is the update equation that is used in the DFP algorithm. The BFGS algorithm
works very similarly, with the subtle difference that it imposes the above conditions
on the inverses of the Hessian approximations, meaning we have

Ck+1 = min
C
∥C− Ck∥ s.t. C = CT, Cyk = sk (1.33)

Again, BFGS uses the Frobenius norm, which leads to the following update formu-
lation:

Ck+1 = (I − ρkskyT
k)Ck(I − ρkyksT

k) + ρksksT
k , (1.34)

14 theoretical foundations

with ρk = 1
yT

k sk
. As Ck+1 is already an approximation of the Hessian inverse at

xk, we can directly use it for step calculation. Regarding the initial choice of C0,
one often selects the identity matrix or approximates the Hessian inverse using
finite differences on the gradient, when computationally feasible. As there is no
universally effective initialization method for C0 across all optimization problems.

1.4.3 AdaHessian [43]

AdaHessian, is an adaptive second-order optimization algorithm. While being concep-
tually very similar to Adam (1.3.6), AdaHessian replaces the square of the gradients
in Adam’s second moment with the square of a Hessian diagonal approximation. To
estimate the Hessian diagonal, AdaHessian employs two key techniques. First, it
utilizes a Hessian-free method based on the Hessian-vector product [29]. This ap-
proach allows for efficient computation without explicitly forming the full Hessian
matrix. Second, AdaHessian implements a stochastic Hessian diagonal approxima-
tion based on [4], which leverages the Hutchinson method [19], a technique for
trace estimation of matrices. Now let f with f : Rn → R and x ∈ Rn, be a neural
network with subsequent loss calculation. We start by taking the scalar product of
g = ∇θ f with z, where z ∈ Rn is a random vector which follows a Rademacher
distribution. This results in a scalar. We then calculate the derivative of this scalar
with respect to θ, such that we get

∂gTz
∂θ

=
∂gT

∂θ
z + gT ∂z

∂θ
=

∂gT

∂θ
z = Hz. (1.35)

This method is known as a Hessian-free approach,because by calculating this
derivative, we obtain a Hessian-vector product without explicitly forming the
Hessian matrix. Following the results from [4], we get

D = diag(H) = E[z⊙ (Hz)]. (1.36)

The Hessian diagonal estimation in AdaHessian leverages an unbiased stochastic
approximation technique. Specifically, the expression z⊙ (Hz), where ⊙ denotes
the Hadamard (element-wise) product, serves as an unbiased estimator for the
diagonal elements of the Hessian matrix. Note that the authors of [43] found that a
single sampling of z is usually sufficient to lead to a reasonable diagonal approxi-
mation. Next up, we demonstrate that employing this diagonal approximation of
the Hessian in the update step yields convergence properties equivalent to those
achieved when utilizing the full Hessian matrix.

Theorem (Convergence Rate of Hessian Diagonal Method) [43]
Let f : Rd → R be a twice continuously differentiable, strongly convex and strictly smooth
function. Then, the update rule given by

θt+1 = θt − ηD−1
t gt,

where Dt is the diagonal of the Hessian Ht = ∇2 f (θt) and gt = ∇ f (θt), yields a
converging algorithm with the following guarantee

f (θt+1)− f (θt) ≤ −
α

2β2 ∥gt∥2, θ ∈ Rd.

1.4 second-order optimization algorithms 15

Proof
As f is strongly convex and strictly smooth function, we know from 1.4.1.1, that
∃α, β > 0 : αI ⪯ ∇2 f (θ) ⪯ βI, ∀θ ∈ Rd. To demonstrate that these bounds also
apply to the diagonal matrix D, let’s consider the standard basis vectors. For any ei,
where all elements are 0 except for the i-th one, which is 1, we can observe:

α ≤ eT
i Hei = eT

i Dei = Di,i and β ≥ eT
i Hei = eT

i Dei = Di,i (1.37)

This relationship implies that Di,i ∈ [α, β], ∀i ∈ {1, . . . , d}. Consequently, we can
extend the matrix inequality to D, such that ∃α, β > 0 : αI ⪯ D ⪯ βI, ∀θ ∈ Rd.
Given this result, we can apply the same convergence analysis as in 1.4.1.1, thus
proving the claim.

To mitigate the inherent stochastic variance associated with this approximation,
AdaHessian employs two key strategies. First, it maintains an Exponential Moving
Average (EMA) of the diagonal estimates D. Second, AdaHessian implements a
spatial averaging algorithm. Consider a Convolutional Neural Network (CNN) as an
example. In a CNN, for a convolutional kernel with block size b (for instance, b = 9
for a 3× 3 kernel), we perform spatial averaging among the kernel’s parameters.
This can be mathematically expressed as,

D(s)[ib + j] =
1
b

b

∑
k=1

D[ib + k], for 1 ≤ j ≤ b, 0 ≤ i ≤
⌊

d
b

⌋
− 1, (1.38)

[43] where d is the number of model parameters.After applying the spatial averaging,
we can define the second momentum of AdaHessian with

D̄t = β2D̄t−1 + (1− β2)(D(s))2. (1.39)

Here, D̄t represents the smoothed estimate of the squared Hessian diagonal at
time step t, β2 is the exponential decay rate for the second moment estimate, and
D(s) is the spatially averaged Hessian diagonal estimate. As mentioned earlier, the
rest of AdaHessian functions exactly analogous to Adam (see 1.3.6), leading to the
algorithm described in 1 [43].

1.4.4 Apollo [25]

Apollo [25] is a rather newly proposed quasi-Newton algorithm for non-convex
stochastic optimization. It operates by calculating a non-singular diagonal approx-
imation of the Hessian matrix, utilizing the weak secant equation. To elucidate
the algorithm’s mechanics, we first briefly revisit the theoretical foundations of
the secant equation in general, and subsequently derive the algorithm from this
basis. We recall from 1.19 that for a supposed neural network with subsequent loss
calculation f with f : Rn → R and x ∈ Rn, we consider the Newton update step as
follows:

xk+t = xt −H f (xt)
−1∇ f (xt), k ∈N. (1.40)

16 theoretical foundations

Algorithm 1 AdaHessian

Require: Initial parameter θ0

Require: Learning rate η

Require: Exponential decay rates β1, β2

Require: Block size b
Require: Hessian power k

1: Initialize m0 = 0, v0 = 0
2: for t = 1, 2, . . . do
3: gt ← current step gradient
4: Dt ← current step estimated diagonal Hessian
5: Compute D(s)

t based on 1.38

6: Update D̄t based on 1.39

7: mt = β1mt−1 + (1− β1)gt

8: vt = β2vt−1 + (1− β2)(D(s)
t)2

9: m̂t =
mt

1−βt
1

10: v̂t =
vt

1−βt
2

11: θt = θt−1 − η mt
vt

12: end for

For simplicity, we write Ht instead of H f (xt)−1. With this, we can derive the general
quasi-Newton update formula:

xk+1 = xk − B−1∇ f (xt), t ∈N, (1.41)

where B is an approximation of the Hessian matrix at xt. We can rewrite this as

xt+1 = xt − B−1∇ f (xt), k ∈N

⇐⇒ xt+1 − xt = −B−1
t ∇ f (xt)

⇐⇒ B(xt+1 − xt) = −∇ f (xt)

⇐⇒ B(xt+1 − xt) +∇ f (xt) = 0 (1.42)

From 1.4.1 we know that∇∆x f (x + ∆x) should satisfy ∇∆x f (x + ∆x) = 0. We can
therefore conclude that B has to satisfy

∇∆x f (x + ∆x) = B(xt+1 − xt) +∇ f (xt). (1.43)

This is equivalent to computing a second-order Taylor expansion (see 1.4.1), then
taking the gradient with respect to ∆x. We then proceed by defining

yt = ∇∆x f (x + ∆x)−∇ f (xt) (1.44)

st = xt+1 − xt, (1.45)

such that the before formula is now

Bst = yt, (1.46)

which is also known as the strong secant equation. For the next approximation, we
choose the closest matrix to B under the condition of the strong secant equation.
Therefore, our algorithm for updating the Hessian approximation B will now be

Bt+1 = argminB∥B− Bt∥F, s.t. Bt+1st = yt. (1.47)

1.5 introduction to artificial neural networks [13] 17

This optimization problem forms the foundation for a family of quasi-Newton
algorithms such as BFGS[10], DFP[14], or SR1[9].[25]. Apollo employs a weakened
form of the secant equation, known as the weak secant equation. The rationale behind
this choice is as follows: While we have used a scalar-valued function f in our
example, the difference of the gradients yt is a vector-valued function. For such
functions, the mean value theorem—which forms the basis of the standard secant
equation in 1.4.4—generally does not hold[25]. Therefore, we apply the scalar
product with sT

t to weaken the condition. This relaxes the equality requirement to
hold only in the direction of st.

Bt+1 = argminB∥B− Bt∥F, s.t. sT
t Bt+1st = sT

t yt. (1.48)

This optimization problem can be solved by an approach first proposed in [44],
where the norm in 1.48 is interpreted as the Frobenius norm.

Λ = Bt+1 − Bt =
sT

t yt − sT
t Btst

∥st∥4
4

Diag(s2
t) (1.49)

here s2
t is the element-wise square vector of st, and Diag(s2

t) is the diagonal matrix
with diagonal elements from vector s2

t , and ∥ · ∥4 is the 4-norm of a vector [25]. To
ensure that the Hessian update remains invariant to the chosen stepsize, the step
direction st is normalized by ηt, leading to

Λ′ = −dT
t yt + dT

t Btdt

∥dt∥4
4

Diag(d2
t), (1.50)

where dt = − st
ηt

. The whole algorithm for Apollo is displayed in 1.4.4. Instead of
working with gradients gt directly, we choose the exponential moving average of
them, in the same fashion as we do in the Adam optimizer 1.3.6. Because Apollo
uses the newton-step 1.19 for its parameter update, we have to make sure that the
approximation B is neither zero nor very small, as this would lead to arbitrary large
steps. For that we define another diagonal matrix Dt for which we choose

Dt = rectify(|Bt|, σ) = max(|Bt|, σ), |Bt| =
√

Bt
TBt, (1.51)

with σ ≥ 0. This approach achieves two key objectives: First, it ensures that small
steps are taken in regions of very high curvature (sharp edges), as |Bt| becomes
large in those cases, and that larger steps are taken when |Bt| is low, although not
excessively large, since saddle points are common in the loss landscape. Secondly, it
guarantees that Dt has no zero-valued diagonal elements, ensuring that it remains
non-singular. In practice Apollo chooses σ = 0.01.[25] [25]

1.5 introduction to artificial neural networks [13]

Biological neural networks are intricate systems of interconnected neurons that
communicate with each other to process information. Each neuron, a specialized
nerve cell, is designed to receive, process, and transmit signals through electrochem-
ical processes. Around the year 1900, a groundbreaking realization emerged that

18 theoretical foundations

Algorithm 2 Apollo

1: Initial: m0, d0, B0 ← 0, 0, 0 ▷ Initialize m0, d0, B0 to zero
2: Good default settings are β = 0.9 and ϵ = 10−4

3: while t ∈ {0, . . . , T} do
4: for θ ∈ {θ1, . . . , θL} do
5: gt+1 ← ∇ ft(θt) ▷ Calculate gradient at step t
6: mt+1 ← β(1−βt)

1−βt+1 mt +
1−β

1−βt+1 gt+1 ▷ Bias-corrected EMA

7: α← dT
t (mt+1−mt)+dT

t Btdt
(∥dt∥4+ϵ)4 ▷ Calculate coefficient of B update

8: Bt+1 ← Bt − α ·Diag(d2
t) ▷ Update diagonal Hessian

9: Dt+1 ← rectify(Bt+1, 0.01) ▷ Handle nonconvexity
10: dt+1 ← D−1

t+1mt+1 ▷ Calculate update direction
11: θt+1 ← θt − ηt+1dt+1 ▷ Update parameters
12: end for
13: end while
14: return θT

these tiny physical building blocks of the brain — the nerve cells and their intricate
connections — are responsible for perception, associations, thoughts, consciousness,
and the ability to learn.[13] The idea of creating an artificial version of the brain
to replicate its functions and achieve a synthetic form of intelligence has a long
history.

The significant leap towards neural network-based artificial intelligence was made
in 1943 by McCulloch and Pitts in their article "A Logical Calculus of the Ideas
Immanent in Nervous Activity" [26]. They were the first to present a mathematical
model of the neuron as a fundamental computational unit of the brain. This article
laid the foundation for constructing artificial neural networks and, consequently, for
this crucial subfield of AI.[13] With the advent of efficient optimization methods and
improved computational power, researchers were able to develop and train neural
networks that could genuinely learn and significantly enhance their performance.
These advances in optimization algorithms, such as (stochastic) gradient descent,
coupled with accelerating hardware like GPUs, enabled neural networks to process
vast amounts of data. This breakthrough resulted in models that could recognize
patterns, make predictions, and solve complex problems across various domains,
effectively demonstrating their learning capabilities. [13] In this section, we dis-
cuss the architecture and some of the underlying theory behind neural networks,
including the algorithms used for training. We will explore how neural networks
are structured, the roles of different layers, and how information flows through
them. Additionally, we will delve into the principles and methods behind training
algorithms like backpropagation, which adjust the network’s weights to improve its
predictive accuracy.

1.5 introduction to artificial neural networks [13] 19

1.5.1 The artificial Neuron [13]

A neuron in an artificial neural network is modeled as a mathematical function that
processes input signals and produces an output. The basic structure is as follows:

yj = f

(
n

∑
i=1

θixi + b

)
.

where:

• yj is the output of the neuron,

• f is a nonlinear activation function applied to the weighted sum of the inputs,

• ∑n
i=1 is the summation over all input values,

• θi are the weights associated with each input,

• xi are the input values, and

• b is the bias term.

The inputs xi of a neuron are each weighted with an individual weighting factor
θi and summed up. These factors θi together with the bias term b, represent the
trainable parameters of a neuron and are responsible for its performance on a given
task. The sum is then fed into a non linear activation function f . This function is
modeled on the idea that the activity of real biological neurons depends on a certain
activation threshold[13]. Activation functions that are commonly used in practice
are the sigmoid-function f (z) = 1

1+e−z or ReLU (Rectified Linear Unit) f (z) =

max(0, z)[27]. The bias term b helps adjust the output by shifting the activation
function horizontally. This allows the neuron to represent patterns that are not
centered around the origin, making it able to better approximate a hyperplane[13].

1.5.2 The Multi-Layer Perceptron (MLP)[17]

A single neuron is limited in its ability to distinguish between linearly separable
data points, as its mathematical formulation models a hyperplane. Consequently,
it cannot represent the output of an XOR (exclusive OR) gate. This is because the
XOR function is not linearly separable.[17]
To overcome this limitation, the Multilayer Perceptron (MLP) was introduced. An
MLP consists of multiple stacked layers of single perceptrons (neurons with an
activation function). Each layer takes an input, processes it through its perceptrons,
and outputs a vector that can then be fed into the next perceptron layer. This
structure enables the MLP to handle complex, non-linearly separable data, such as
the XOR function [17]. The output of an MLP layer can be mathematically expressed
as:

x(l) = f
(

θ(l)x(l−1) + b(l)
)

,

where:

20 theoretical foundations

• l is the current layer,

• x(l) is the output of layer l,

• f is the activation function applied to the layer’s output,

• θ(l) is the weight matrix of layer l,

• x(l−1) is the input vector to layer l (output of the previous layer),

• b(l) is the bias vector of layer l.

As we can see, the formulation follows the same principle as a single neuron but
now in a vectorized form. θ(l) is a weight matrix of size nl × nl−1, where nl and nl−1
are the number of neurons in layer l and l− 1 respectively. x(l−1) is the output vector
from the previous layer. From their matrix-vector product, we get the pre-activations
for each layer in vectorized form. This vector is then fed into a non-linear activation
function, whose output is then fed into the next layer.

It is easy to see why the activation function must be non-linear. If the activation
functions were linear, the stacked MLP layers would collapse into a single layer,
rendering the model unable to fit complex, highly non-linear data.[17]

The MLP falls into the category of feedforward neural networks, meaning that
the flow of information is unidirectional, from one layer to the next. Each layer
passes its information forward to the subsequent layer. In contrast, there are other
network architectures, such as recurrent neural networks (RNNs), where the flow of
information is not restricted to only consecutive layers. In RNNs, information can
loop back to the same layer, allowing the network to maintain and utilize internal
state information over time. In practice, a Multilayer Perceptron (MLP) typically
consists of an input layer that takes the data and passes it to one or more hidden
layers before reaching the output layer. In the output layer, the data is usually
mapped to a probability distribution using a softmax function:

σ(zi) =
ezi

∑m
j=1 ezj

for i = 1, 2, . . . , m, (1.52)

which can then be used to get the model’s prediction depending on the task that
should be performed.

1.5.3 Training of Neural Networks [17]

The goal of training is to find a set of parameters such that the neural network
minimizes a particular cost function. The cost or loss function is a measure that
determines the amount of error in the predictions ŷ made by the neural network
on a given dataset. In supervised training, we have a set of data points x ∈ X and
the corresponding ground truth labels y ∈ Y. We formulate our cost function such
that it calculates the deviation between a ground truth label y and the prediction ŷ
of the network given the corresponding data point. One of the most popular loss
functions is the Mean Squared Error (MSE):

MSE =
1
m

m

∑
i=1

(ŷi − yi)
2. (1.53)

1.5 introduction to artificial neural networks [13] 21

The MSE measures the Euclidean distance between the predictions ŷ and the ground
truth y. It is straightforward to show that minimizing the MSE is equivalent to
maximizing the log likelihood:

θML = arg max
θ

m

∑
i=1

log P(y(i)|x(i); θ). (1.54)

where θML is the set of parameters that maximizes the probability that the labels
y(i) correspond to the data points x(i).

Another common loss function, often used for classification tasks, is the Cross-
Entropy Loss:

H(y, ŷ) = − 1
m

m

∑
i=1

C

∑
c=1

yi,c log(ŷi,c). (1.55)

where m and C are the number of samples and classes respectively. To understand
the intuition behind this definition, consider a target or true probability distribution
P and an approximate distribution Q. The cross-entropy between Q and P quantifies
the additional number of bits needed to encode events from P using the distribution
Q instead of the true distribution P. By minimizing the cross-entropy between Q
and P, we improve the approximation of the true distribution P using the model
distribution Q.[6]
To train the model, i.e., to tune its parameters such that the loss of the model’s
output is minimized, we use gradient-based optimization methods as described
in 1.19. To calculate the gradient of the parameters, we employ the backpropaga-
tion algorithm. The backpropagation algorithm was first introduced by Rumelhart,
Hinton, and Williams in 1986 [32]. Unless otherwise noted, all information in this
section regarding the technique is taken from their work. It utilizes the chain rule
to efficiently backpropagate gradient information from the last layer to the first.
Before applying the backpropagation algorithm, we first have to evaluate all the
layers and activations in the network. This process is often called the forward pass.
After computing the loss L, we calculate the gradient of L with respect to the

pre-activations of the model output, which we denote as δM = ∂L
∂z(M) =

∂L
∂ŷ(M) ·

∂ŷ(M)

∂z(M) ,

where z(M) = θ(M)x(M−1) + b(M) and ŷ(M) = f (z(M)), with M being the last layer.
We then loop back to the first layer with 0 ≤ m < M and calculate the respective
gradients of the current layer using the gradient information from the previous
layer. For that, we set

δ(m) =
∂L

∂z(m)
(1.56)

=

[
∂z(m+1)

∂ŷ(m)

∂L
∂z(m+1)

]
⊙ ∂ŷ(m)

∂z(m)
(1.57)

=

[
∂z(m+1)

∂ŷ(m)
δ(m+1)

]
⊙ ∂ŷ(m)

∂z(m)
(1.58)

=
[
θ(m+1)T

δ(m+1)
]
⊙∇z(m) f . (1.59)

22 theoretical foundations

Here, ⊙ denotes the element-wise (Hadamard) product. To calculate the gradient
information for the i-th the parameter of a neuron j in layer m, we set

∂L

∂θ
(m)
j,i

=
∂L

∂z(m)
j

·
∂z(m)

j

∂θ
(m)
j,i

= δ
(m)
j · ŷ(m−1)

i , (1.60)

∂L

∂b(m)
j

=
∂L

∂z(m)
j

·
∂z(m)

j

∂b(m)
j

= δ
(m)
j . (1.61)

We do this iteratively until we reach the first layer. After that, we employ the
optimization step in which we tune the parameters to follow the negative gradient
step as seen in 1.3.3. This step represents the crux of this work, which focuses on the
efficient adjustment of network parameters by incorporating not only gradient infor-
mation but also second-order information to achieve faster convergence. Algorithm
3 provides an overview of the backpropagation algorithm in pseudocode.

Algorithm 3 Neural Network Backpropagation [32]

Require: Training data {(x(i), y(i))}m
i=1, learning rate α

1: Initialize weights W and biases b randomly
2: repeat
3: for all training example (x(i), y(i)) do
4: Compute Loss:
5: Compute loss L(y, ŷ(M))

6: Backward Pass:
7: Compute δM = ∂L

∂z(M) =
∂L

∂ŷ(M) ⊙
∂ŷ(M)

∂z(M)

8: for m = M− 1 to 0 do
9: Compute δ(m) = [θ(m+1)T

δ(m+1)]⊙∇z(m) f
10: Compute gradients:
11: ∂L

∂θ
(m)
i,j

= δ
(m)
j ⊙ ŷ(m−1)

i

12: ∂L
∂b(m)

j

= δ
(m)
j

13: end for
14: end for
15: for l = 0 to M do
16: Update weights: θ(l+1) ← θ(l) − α ∂L

∂θ(l)

17: Update biases: b(l+1) ← b(l) − α ∂L
∂b(l)

18: end for
19: until convergence

Taken from [17]
In addition to the gradient calculation and optimization steps, there are many

other factors that determine the success of training a neural network. A crucial
aspect of training a neural network is finding a good set of values for the hyper-
parameters, as most deep learning algorithms come with several hyperparameters
that control various aspects of the algorithm’s behavior. Key hyperparameters in-
clude the learning rate, the number of epochs, the batch size, the architecture of
the network (number of layers and neurons per layer) and as weighting factors.

1.5 introduction to artificial neural networks [13] 23

Optimizing these hyperparameters is highly non-trivial and are either determined
through manual or automatic selection. The goal is to find a set of hyperparameter
such that the generalization error is as small as possible. To facilitate this opti-
mization, the training data is typically divided into three distinct sets: the training
set, the validation set, and the test set. The training set is used to train the model,
while the test set is reserved for evaluating the model’s final performance. The
validation set is specifically used for tuning hyperparameters and monitoring the
model’s performance to avoid overfitting (i.e., achieving low training error but high
generalization error), as the generalization error for many hyperparameters, such as
the learning rate, often follows a U-shaped curve when plotted as a function of the
hyperparameter, making careful selection of these hyperparameters essential. As we
have already stated, overfitting and underfitting are common pitfalls during model
training, resulting in the model either memorizing the training data (overfitting) or
failing to learn the training data at all (underfitting). A common method to tackle
this problem is regularization, which is often defined as "any modification made
to a learning algorithm that is intended to reduce its generalization error but not
its training error" [17]. In theory, regularization is used to reduce the amount of
variance in a model, at the cost of increasing the model’s bias. This is often referred
to as the bias-variance tradeoff. While the bias is a measures for the inherent inability
of a model to capture the true relationship of the data, variance measures the
variability of predictions across different sets of data. Thus reducing the variance
of a model, results in a better generalization ability on unseen data[20]. There are As described in [17]

various techniques to facilitate regularization, one of the most widely used regular-
ization techniques is the norm penalty on the model’s parameters. This introduces
a penalty Ω(θ), where Ω is a norm and θ represents the network’s parameters. We
denote the regularized objective function by J̃ such that we get:

J̃(θ; X, y) = J(θ; X, y) + λΩ(θ), (1.62)

where λ is a hyperparameter that controls the strength of the regularization and is
often called the weight decay. In practice we only consider the weights of the network
for regularization instead of all parameters θ [17]. The most widely used norms
for Ω are the L1 norm and the L2 norm. The L2 norm follows the definition of
Ω(θ) = 1

2∥w∥2
2. This formulation incentivizes the network to have weights that lie

closer to the origin by pushing parameters whose directions, corresponding to
eigenvectors of the Hessian of J with small eigenvalues (i.e., directions with small
curvature), closer to zero. The L1 norm is defined as Ω(θ) = ∥w∥1 = ∑i |θi|. It
can be shown that L1 regularization encourages sparsity in the solution, meaning
that many parameters are driven to an optimal value of zero. This property of
the L1 regularizer is often used in a mechanism called feature selection, where the
model learns which features are most important by driving many parameters to
zero. Other important regularization techniques that do not influence the loss
function are dropout and early stopping. Dropout is based on the idea of training an
ensemble of subnetworks during the training of the larger model. This is achieved
by multiplying the output of a unit by zero with a given probability, effectively
removing the unit from the network. This way, a large number of subnetworks are
trained to predict the correct output, even when there is "brain damage" present. In

24 theoretical foundations

practice, this often leads to better generalization abilities of the entire model. Early
stopping is another regularization technique that helps to prevent overfitting by
monitoring the model’s performance on the validation set during training. We stop
the training onnce the model’s performance on the validation step stops improving
(or starts worsening), even if the performance on the training set continues to
improve. Although simple, this form of regularization has been proven to be very
effective. [17]

1.5.4 Decoupled Weight Decay [23]

Decoupled Weight Decay introduces a novel approach that reorders the application of
the network parameters θ within the optimizer. The authors find that the traditional
implementation of weight decay, which is the addition of λθ to the gradient in the
optimizer [23], is effectively equivalent to L2 regularization for standard stochastic
gradient descent (SGD). Given our L2 regularized loss J̃(θ; X, y), the gradient of
this regularized loss function is

∇θ J̃(θ; X, y) = ∇θ J(θ; X, y) + λθ. (1.63)

This yields the optimizer’s update step

θt+1 = θt − η∇θ J̃(θ; X, y) = θt − η(∇θ J(θ; X, y) + λθt) (1.64)

as described in [24].
This equivalence does not hold for adaptive gradient optimizers such as Adam.

In adaptive optimizers, the weight decay must be decoupled from the gradient
update to maintain effective regularization and optimization [23]. In the standard
implementation of Adam, weight decay is incorporated into the gradient update step
as follows:

gt = ∇θ J(θt) + λθt,

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g2
t .

Here, the weight decay term λθt is added directly to the gradient of the loss function
J(θt), which means the regularization is coupled with the gradient update.

In decoupled weight decay, however, the weight decay is applied simultaneously
but separately from the gradient update step. This results in a new update rule:

θt+1 = θt − η(
m̂t√

v̂t + ϵ
+ λθt). (1.65)

In this formulation:

• θt represents the parameters at iteration t,

• λ is the weight decay coefficient.

The decoupled weight decay ensures that the weight decay term λθt is applied
separately from the gradient step, avoiding interference with the adaptive nature of
the gradient updates, where weights with large gradient magnitudes are regularized
by a smaller relative amount than other weights. [23].

1.5 introduction to artificial neural networks [13] 25

1.5.5 Exact Calculation of the Hessian Matrix for MLPs [5]

In this section we will discuss how we can calculate the exact Hessian of a Loss
using the backpropagation algorithm that we covered earlier. We see that the exact
values of the Hessian can be computed using only a few forward and backward
propagations. It should be noted that although an efficient form of calculation for
the Hessian might be tempting, the storage requirements for such computations are
infeasible for larger neural networks. Therefore, in practice, only approximations of
the Hessian or its diagonal are considered. Unless otherwise specified, all informa-
tion of this section are taken from [5]. We will start by considering a feed-forward
network with the standard notion introduced in 1.5.1

zi = ∑
j

θijaj + bi ai = f (zi), (1.66)

with zi and ai beeing an output of the previous layer and it’s corresponding
current activation. We now want to find the first and second derivatives of an error
function E, which we model to consist of a sum of individual errors computed for
each training instance

E = ∑
p

Ep, (1.67)

where p labels the data point. We now consider a simple feedforward architecture
without skip or feedback connections. Without loss of generality, we assume that
unit i is in the same layer as unit n, or in a lower layer. Due to the symmetry of the
Hessian (see 1.1.5), the remaining terms do not have to be computed. Utilizing the
chain rule, we can can formulate this as

∂2Ep

∂θij∂θnl
=

∂zi

∂θij

∂

∂zi

(
∂Ep

∂θnl

)
= aj

∂

∂zi

(
∂Ep

∂θnl

)
. (1.68)

We now introduce a set of quantities σn defined by

σn ≡
∂Ep

∂zn
. (1.69)

Using this we can write the second derivative as

∂2Ep

∂θij∂θnl
= aj

∂

∂zi
(σnal), (1.70)

because of ∂zn
∂θnl

= al . Further we introduce some additional quantities

gli ≡
∂zl

∂zi
bni ≡

∂σn

∂zi
. (1.71)

Utilizing the product rule, the second derivatives can now be written in the
following form

∂2Ep

∂θij∂θnl
= ajσn

∂ f
∂zl

gli + ajalbni, (1.72)

26 theoretical foundations

where ∂ f
∂zl

= ∂al
∂zl

and ∂ f
∂zl

gli =
∂al
∂zi

Using the chain rule for partial derivatives we can
evaluate the gli as follows

gli = ∑
r

∂zl

∂zr

∂zr

∂zi
, (1.73)

where the sum runs over all units r which send connections to unit l. The above
equation can be recursivly defined as

gli = ∑
r

f ′(zr)θrl gri, (1.74)

where gri =
∂zr
∂zi

and ∂zl
∂zr

= ∂zl
∂ar

∂ar
∂zr

= θrl
∂ f
∂zr

. To obtain the initial conditions, we set
gii = 1 and gli = 0 for all units l ̸= i in the same or lower layers (i.e., layers nearer
to the output). All the other gli will be determinded during forward propagation
using the above recursive equation. We can obtain the values for σn in a very similar
fashion

σn = ∑
r

∂Ep

∂zr

∂zr

∂zn
, (1.75)

where the sum runs over all units r to which unit n sends connections. Therefore
we get

σn = ∑
r

∂Ep

∂zr

∂zr

∂zn
= ∑

r
σr

∂zr

∂zn
= ∑

r
σrθrn

∂an

∂zn
= f ′(zn)∑

r
σrθrn. (1.76)

To obtain the initial condition for σm, where m is the label of an output unit, we
derive

σm =
∂Ep

∂zm
=

∂Ep

∂am

∂am

∂zm
= f ′(zm)

∂Ep

∂am
. (1.77)

Next up, we derive a generalized back-propagation equation for the bni. Substituting
the back-propagation formula of σn into the definition of bni, we get

bni =
∂

∂zi

(
f ′(zn)∑

r
θrnσr

)
. (1.78)

calcuting the derivative gives

bni = f ′′(zn)gni ∑
r

θrnσr + f ′(zn)∑
r

θrnbri. (1.79)

Using the above relationships, we can formulate the initial condition for bmi

bmi =
∂σm

∂zi
=

∂

∂zi

(
∂Ep

∂zm

)
=

∂2Ep

∂z2
m

∂zm

∂zi
= Hmgmi, (1.80)

with

Hm ≡
∂2Ep

∂z2
m

= f ′′(zm)
∂Ep

∂am
+ (f ′(zm))

2 ∂2Ep

∂a2
m

. (1.81)

Once we have obtained the initial values of all the bmi, the bni of the remaining
units, are determinded via back-propagation. To summarize this process, for each
pattern or data point p:

1.5 introduction to artificial neural networks [13] 27

1. Perform forward-propagation to calculate all an and gli using their respective
equations.

2. Execute back-propagation to determine σn and bni.

3. Finally, evaluate the value of ∂2Ep
∂θij∂θnl

using the determinded values.

The total number of distinct forward and backward propagations required per
training pattern is equal to twice the number of hidden and output units in the
network. The number of operations for each propagation scales with N, where N is
the total number of weights in the network[5].

2
N U M E R I C A L E VA L UAT I O N S

In Chapter 1, we covered the mathematical foundations of second-order optimiza-
tion and its application within the context of neural networks. We discussed both
fundamental and cutting-edge techniques for first-order and second-order opti-
mization, providing a comprehensive overview of the field. In this chapter, we
examine our experimental results, by comparing the performance and convergence
properties of each optimizer including second-order optimization methods, namely
AdaHessian[43] and Apollo[25], against established first-order optimizers on com-
mon datasets across multiple domains. Our research will be conducted on two
computer vision datasets, namely CIFAR and (Tiny)ImageNet, as well as WMT-14,
a machine translation dataset, which will be used to train a transformer model.
For each of these datasets, we will discuss in depth the hyperparameter settings
and model selection process used in our experiments, and relating them to our
results. This detailed documentation ensures that others can easily reproduce our
results. Furthermore, we provide a thorough comparison of our findings with those
reported in the original papers of AdaHessian and Apollo. We critically analyze
these results, offering insights into the strengths and weaknesses of each method.

2.1 overview of software and tools used

To efficiently evaluate the optimizers across various datasets with a range of hyper-
parameters, we developed a comprehensive benchmarking framework in Python
3.6.8. The code for this framework is publicly accessible on our GitHub repository1.
and is available for anyone to use and modify. The core of our framework is built
on PyTorch. PyTorch is a popular open-source machine learning framework known
for its dynamic computation graph and easy to integrate GPU acceleration. For
datasets and pre-built computer vision model architectures, we utilized the PyTorch-
associated torchvision module. Additionally, NumPy is used in some of the utility
functions and to prepare data for use with matplotlib. From the hardware side, most
of the experiments, unless otherwise specified, were conducted on Nvidia A40 GPUs.
These GPUs are equipped with 48 GB of GDDR6 memory and deliver FP32 perfor-
mance of up to 19.5 TFLOPS. For efficient multi-GPU training, we used the PyTorch
DataParallel module, which splits the input across the specified GPU’s by chunking
along the batch dimension[31]. Because AdaHessian uses torch.autograd.grad to
compute the second order derivatives, we were not able to utilize the more efficient
DDP (Distributed Data Parallel) package, as DDP currently doesn’t work with the
construction of derivative graphs. For more information on this, see this issue2.

1 https://github.com/Neural-Opt/second_order_optim_models

2 https://github.com/pytorch/pytorch/issues/63812

28

https://github.com/Neural-Opt/second_order_optim_models
https://github.com/pytorch/pytorch/issues/63812

2.2 image classification 29

2.2 image classification

For evaluation, we choose the most widely used first-order optimizers, as well as
AdaHessian and Apollo for second-order optimizers. In addition to the regular
metrics of Training Accuracy, Training Loss, Test Accuracy, and Test Loss, we also
evaluate the speed of each optimization step and its memory usage during this step.
This helps assess the real-world applicability of the second-order optimizers. Finally,
we introduced a new metric called Time till Convergence (TTC). TTC measures
the time in epochs each optimizer needs for the Training Loss to converge. We
compute the Time till Convergence (TTC) by following Algorithm 4, which takes
as input the loss data, a threshold, and a window size. To prevent outliers from
distorting the results, we rely on short-term intervals, from which we calculate
the mean. For learning rate scheduling, we employ both milestone decay as well

Algorithm 4 Time till Convergence (TTC) Calculation

1: Input: Loss array data, treshold T= data[0]
100 , window size σ = 5

2: Initialize: old_mean← mean(data[|data| − σ :])
3: for i = n− σ, n− σ, . . . , 0 do
4: new_mean← mean(data[i : i + σ])

5: if |new_mean− old_mean| ≤ T then
6: continue
7: else
8: ttc← i + arg min(new_mean)
9: break

10: end if
11: end for

as cosine annealing. While milestone decay decays the learning rate by a factor of
γ at specified milestones (certain epochs), cosine annealing gradually reduces the
learning rate following a cosine function. For our experiments, we use PyTorch’s
implementation of MultiStepLR for milestone decay and CosineAnnealingLR for
cosine annealing. In the next sections, we discuss the obtained results on the CIFAR-
10 and TinyImageNet datasets, as well as the chosen hyperparameters for the
optimizers and learning rate schedulers.

2.2.1 CIFAR-10

The CIFAR-10 dataset comprises 60,000 RGB images, each with dimensions of
32x32 pixels, categorized into 10 different classes, with 6,000 images per class
and a training/test split of 50000/10000. For evaluation, we utilize the ResNet-
110 architecture. Unlike ResNet-18, ResNet-110 is specifically designed to handle
smaller images, such as those found in the CIFAR-10 dataset. ResNet-110 comprises
54 BasicBlocks, divided into 3 layer groups, each containing 18 blocks. Each block in
ResNet-110 is two layers deep. The first layer consists of a 3x3 convolution, followed
by batch normalization and an activation function. The second layer also applies a
3x3 convolution and includes a skip connection that directly adds the input of the

30 numerical evaluations

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Epochs

Polynom. Training Accuracy (milestone)

0 50 100 150

0

0.2

0.4

0.6

Epochs

Polynom. Test Accuracy (milestone)

0 50 100 150

−6

−4

−2

0

Epochs

Log Train Loss (milestone)

0 50 100 150

−1

0

1

2

Epochs

Log Test Loss (milestone)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.1: Evaluation of optimizers on CIFAR-10 using ResNet-110 with the milestone
learning rate scheduler, where hyperparameters are held constant across all
optimizers. For better visualization we applied a polynomial transformation,
with x̂ = xα and α = 5, for every x ∈ D in the output data D.

block to the output of the second layer. This is then followed by another application
of an activation function (ReLU). After each layer group, the channel width doubles.
This results in 16 channels for the first block group and 32 and 64 channels for
the second and third block groups, respectively. Together with the fully connected
classification layer of size 64x10, where 10 corresponds to the number of classes,
this totals 110 layers [18]. Given Apollo’s status as a recent advancement in the
development of second-order optimizers, we closely adhere to their evaluation
methodology. This allows us to effectively compare their results with our own
in subsequent analyses. We therefore set our training batch size to 128. For the
milestone lr-scheduler, we choose milestone epochs of 80 and 120 with γ = 0.1,
meaning that the learning rate is decayed by a factor of 10−1 at epochs 80 and 120.
For both the cosine-annealing and milestone learning rate scheduler, we train the
model for 164 epochs. To ensure a fair comparison between first and second-order
optimizers, we employed two key strategies. First, we addressed the potential for
inherent advantages due to superior hyperparameter settings. To mitigate this, we

2.2 image classification 31

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Epochs

Polynom. Training Accuracy (step-lr)

0 50 100 150

0

0.2

0.4

0.6

Epochs

Polynom. Test Accuracy (step-lr)

0 50 100 150

−6

−4

−2

0

Epochs

Log Train Loss (step-lr)

0 50 100 150

−1

−0.5

0

0.5

Epochs

Log Test Loss (step-lr)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.2: Evaluation of optimizers on CIFAR-10 using ResNet-110 with the milestone
learning rate scheduler, where hyperparameters are choosen optimally across
all optimizers.For better visualization we applied a polynomial transformation,
with x̂ = xα and α = 5, for every x ∈ D in the output data D.

applied the optimal hyperparameters of Adam or AdamW—widely regarded as
industry standards—to the second-order optimizers. The authors of Apollo [25]
note that both Apollo(W) and AdaHessian benefit significantly from learning rate
warmup. However, our goal was to evaluate the real-world applicability of these
second-order optimizers under basic conditions. Therefore, we opted for the most
rudimentary settings to assess whether Apollo(W) and AdaHessian could perform
well without such enhancements. This approach tests the optimizers’ effectiveness
in real-world conditions, where complex tuning is often impractical. Secondly, we
test all optimizers with their respective optimal parameters as mentioned in [25].
As discussed in Section 1.5.4, weight decay introduces an additional constraint to
the optimizer. This technique aids in regularization, though it can sometimes result
in slower convergence. To ensure fairness in our comparison, we applied the same
learning rate and weight decay across all optimizers, which are listed in A.1.

Examining the results presented in Figure 2.1, which utilizes milestone learning
rate decay, we observe several key findings. AdamW and AdaBelief converge the

32 numerical evaluations

fastest with the best generalization. Although not optimally tuned, Apollo(W) shows
reasonable convergence and generalization, while AdaHessian performs poorly
with the chosen hyperparameters. When optimally tuned however, as shown in
Figure 2.2, Apollo(W) and AdaHessian are capable of outperforming other optimizers
by a small margin. This suggests that AdaHessian may require additional effort to
tune its hyperparameters optimally, as commonly used settings from first-order
methods have a much worse impact on performance compared to Apollo(W).

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Epochs

Polynom. Training Accuracy (cosine)

0 50 100 150

0

0.2

0.4

0.6

Epochs

Polynom. Test Accuracy (cosine)

0 50 100 150

−6

−4

−2

0

Epochs

Log Train Loss (cosine)

0 50 100 150
−1

−0.5

0

0.5

Epochs

Log Test Loss (cosine)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.3: Evaluation of optimizers on CIFAR-10 using ResNet-110 with the cosine annealing
learning rate scheduler, where hyperparameters are choosen optimally across
all optimizers. For better visualization we applied a polynomial transformation,
with x̂ = xα and α = 5, for every x ∈ D in the output data D.

Using the cosine annealing learning rate scheduler in our first evaluation strategy,
we observe the same ordering of optimizers in terms of generalization and con-
vergence behavior (see Figure A.1). To expand on our second evaluation strategy,
Figure 2.3 illustrates the performance of each optimizer when given its optimal
set of hyperparameters, as specified in [25]. As previously mentioned, AdaHessian,
Apollo and ApolloW demonstrate superior performance in terms of generalization
error. While both Apollo and ApolloW are able to converge faster than AdaHessian,
especially in the early epochs, ApolloW converges more slowly than its decou-

2.2 image classification 33

pled first-order counterparts, AdamW and AdaBelief. While AdaHessian, Apollo and
ApolloW perform similiar in the setting of 2.3, AdaHessian exhorts much higher
variability when compared to A.1. This observation lends credence to the claim in
[25] that Apollo and ApolloW may be more practical than AdaHessian for real-world
applications.
Expanding on Apollo’s better generalization abilities, figure 2.3 shows that Apollo
and ApolloW continue to decrease their test loss even at epoch 164, while Adam and
AdamW, experience a steadily increasing test loss.

In Table 2.3, we can observe the maximum memory consumption of each opti-
mizer and the duration of one optimization step realtive to SGD. Not surprisingly,
Apollo and AdaHessian both take longer for each step and consume more mem-
ory (see Table 2.3). While the increase in computation time and GPU memory is
rather modest for Apollo, we can see that AdaHessian takes significantly longer
for computation compared to both Apollo and the first-order methods, as well as
consumes much more memory. This is likely the result of the second backward
pass AdaHessian uses to compute the second-order gradients, which also limits the
use of AdaHessian in practice.

Table 2.1: Accuracy (%) of different optimizers across CIFAR-10 and TinyImageNet, evalu-
ated on 3 runs (CIFAR-10)

CIFAR-10 Tiny ImageNet

Milestone Cosine Milestone Cosine

SGD 87.2 ± 0.86 88.17 ± 0.3 39.32 38.56

Adam 90.8 ± 0.39 90.32 ± 0.08 43.06 43.44

AdamW 90.35 ± 0.06 89.99 ± 0.26 42 41.71

AdaBelief 90.23 ± 0.18 90.08 ± 0.18 41.88 41.72

RMSProp 90.1 ± 0.12 89.5 ± 0.33 39.4 39.9

Apollo 91.88 ± 0.38 92.18 ± 0.18 44.96 44.32

ApolloW 92.03 ± 0.08 92.02 ± 0.17 43.06 43.96

AdaHessian 91.64 ± 0.26 91.81 ± 0.55 44.28 44.08

2.2.2 Tiny ImageNet

For the second image classification dataset, we use Tiny ImageNet [37]. Tiny
ImageNet is a more manageable subset of the well-known ImageNet dataset. It
consists of 100,000 RGB images, each sized 64x64 pixels, across 200 different classes.
For training, we again follow the configuration outlined by Apollo [25] and utilize
a ResNet-18 model with approximately 11.7 million parameters. We found that
deeper ResNet architectures, like ResNet-50, lead to significantly more overfitting
during training. The training is conducted with a batch size of 256. We implement
milestone decay, adjusting the learning rate at epochs 40 and 80 by a factor of
γ = 0.1. The model is trained for 120 epochs, employing both milestone decay and

34 numerical evaluations

Table 2.2: Time (epochs) until convergence (see 4) of the training loss across CIFAR-10 and
TinyImageNet

CIFAR-10 Tiny ImageNet

Milestone Cosine Milestone Cosine

SGD 86 ± 5.0 113 ± 1.0 44 52

Adam 94 ± 1.0 132 ± 1.0 57 84

AdamW 81 ± 0.0 112 ± 3.0 40 59

AdaBelief 81 ± 0.0 108 ± 4.0 40 60

RMSProp 80 ± 0.0 108 ± 1.0 40 58

Apollo 84 ± 1.0 125 ± 1.0 42 60

ApolloW 87 ± 1.0 137 ± 1.0 43 60

AdaHessian 88 ± 0.0 121 ± 2.0 53 72

cosine annealing strategies. Our strategy for hyperparameter evaluation remains
consistent with those used for CIFAR-10. We first test the optimizers’ performance
by evaluating the second-order optimizers on the optimal values of the popular
first-order optimizers. These settings are given in A.2

As we can see in 2.4 and 2.5, the performance of the second-order optimizers
largely follows the same regime as in 2.1 and 2.2. AdaHessian and SGD still aren’t
able to perform well with their non-optimal hyperparameters. Although it shows
that they both have a steadily decreasing test loss, meaning they are able to prevent
overfitting much better than AdamW or AdaBelief. Referring to 2.6, we can see
that AdaHessian still shows a high amount of performance variance between its
optimal and non-optimal hyperparameter settings, while Apollo and ApolloW have
less variance in their performance. As both second-order methods are able to
reduce the amount of overfitting, especially in the later epochs (100-120), and
therefore achieve better generalization results, we could conclude that they are
able to find flatter minima in the loss landscape, that are generally associated
with better generalization [17]. In terms of convergence behavior, we can see that
although Apollo and ApolloW are able to converge faster than AdaHessian, they are
still considerably slower than AdamW and AdaBelief (see 2.2). Therefore, we can
conclude that, at least in its optimal setting, Apollo is able to offer a reasonably good
trade-off between convergence time and generalization performance. Meanwhile,
AdaHessian is severely limited in its practical applicability not only by its variability
in performance, but also by its memory usage.

2.3 machine translation

For the task of machine translation, we utilize the MarianMT framework, specif-
ically designed to train sequence-to-sequence translation models. The pre-built
models in MarianMT are Transformer-based and share the same architecture as
BART (Bidirectional and Auto-Regressive Transformers). In contrast to PyTorch’s

2.3 machine translation 35

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Epochs

Training Accuracy (milestone)

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

Epochs

Test Accuracy (milestone)

0 20 40 60 80 100 120

−4

−2

0

2

Epochs

Log Train Loss (milestone)

0 20 40 60 80 100 120

1

1.2

1.4

1.6

Epochs

Log Test Loss (milestone)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.4: Evaluation of optimizers on TinyImageNet using ResNet-18 with the milestone
learning rate scheduler, where hyperparameters are held constant across all
optimizers

nn.Transformer module, MarianMT abstracts not only the Encoder and Decoder
blocks but also the positional encoding and embedding layers. Which makes it
much easier to work with. Additionally, MarianMT provides a pre build tokenizer,
which we use for our input sequences.

2.3.1 WMT-14

The WMT-14 (Workshop on Machine Translation 2014) is a benchmark dataset for
machine translation tasks. It offers parallel texts in various language pairs, with
German-English being particularly prominent. In out translation task we utilizes
the German-English portion of the WMT-14 dataset, which contains about 4.5 Mio.
sentence pairs. We utilize embedding layers with a dimensionality of 512 for both
input and output tokens. The Transformer consists of 3 Encoder and 3 Decoder
blocks, each employing 8 attention heads. Both the Encoder and Decoder incorpo-
rate feed-forward networks (FFN) with a hidden dimension of 512. We evaluate
our model’s translation quality using the BLEU (Bilingual Evaluation Understudy)

36 numerical evaluations

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

Epochs

Training Accuracy (milestone)

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

Epochs

Test Accuracy (milestone)

0 20 40 60 80 100 120
−6

−4

−2

0

Epochs

Log Train Loss (milestone)

0 20 40 60 80 100 120

1

1.2

1.4

1.6

Epochs

Log Test Loss (milestone)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.5: Evaluation of optimizers on TinyImageNet using ResNet-18 with the milestone
learning rate scheduler, where hyperparameters where hyperparameters are
choosen optimally across all optimizers.

score, calculated with the sacrebleu library. Our training procedure employs a batch
size of 256 and limits input sentences to a maximum length of 128 tokens. For
learning rate scheduling, we follow the original Transformer paper [40] and employ
the InverseSquareRootLR function, which includes a warmup phase of 4,000 steps
during which the learning rate increases linearly. Each optimizer was trained for
8 epochs which resulted in about 140k steps. The hyperparameters of each op-
timizer were carefully selected by evaluating the model on smaller datasets and
comparing the performance of the optimizers. The final Hyperparameter settings
are described in A.3. In Figure 2.7, we can see that both in terms of convergence
and generalization performance, AdaBelief produces the best results from the tested
first order methods. While Apollo and ApolloW convergence marginally faster than
Adam and AdamW, AdaBelief is still performing slightly better in both domains.
Only AdaHessian demonstrates an ability to converge about one epoch faster and
shows significantly better performance in terms of the BLEU score when compared
to AdaBelief. However, AdaHessian was about 2.5 times slower than AdaBelief, di-
minishing its convergence advantage in terms of wall clock time. SGD was able

2.3 machine translation 37

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

Epochs

Training Accuracy (milestone)

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

Epochs

Test Accuracy (milestone)

0 20 40 60 80 100 120

−6

−4

−2

0

Epochs

Log Train Loss (milestone)

0 20 40 60 80 100 120

1

1.2

1.4

1.6

1.8

Epochs

Log Test Loss (milestone)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure 2.6: Evaluation of optimizers on TinyImageNet using ResNet-18 with the cosine
learning rate scheduler, where hyperparameters where hyperparameters are
choosen optimally across all optimizers.

to converge and achieve decent results, although slower convergence speed is to
be expected when training Transformer based models with SGD [11]. Regarding
RMSProp, we were unfortunately unable to find a suitable set of hyperparameters,
even after extensive tuning.

38 numerical evaluations

0 20 40 60 80 100 120 140

1

1.5

2

Train Loss

0 2 4 6
2

4

6

8

10

12

14

BLEU Score

ApolloW Adam SGD
AdaBelief Apollo AdamWAdaHessian

Figure 2.7: Evaluation of optimizers on WMT-14 using the Transformer architecture with
the InverseSquareRootLR learning rate scheduler. Hyperparameters are individ-
ually tuned for optimal performance.

Table 2.3: Cost, Speed, and Memory Usage of Different Optimizers Across Various Datasets

CIFAR-10 Tiny ImageNet WMT-14

Cost (x SGD) Speed Memory Speed Memory Speed Memory

SGD 1.0 1.0 1.00 1.00 1.00 1.00

Adam 1.0292 1.0112 1.0502 1.2192 1.0217 1.02174

AdamW 1.0317 1.0112 1.0458 1.2151 1.0299 1.02993

AdaBelief 1.0402 1.0112 1.0581 1.2273 1.0389 1.03895

RMSProp 1.0213 1.0 1.0274 1.0079 - -

Apollo 1.1337 1.0223 1.1616 1.4313 1.1167 1.11669

ApolloW 1.1359 1.0223 1.1556 1.4336 1.1183 1.11828

AdaHessian 2.6654 3.6443 1.9098 2.7969 2.6121 1.716

3
H E S S I A N A P P R O X I M I Z AT I O N Q UA L I T Y A N D S A P O L L O

In this chapter, we will closely examine the behavior of Apollo and AdaHessian to
understand how they differ from established first-order methods and whether their
resource overhead is justified. As both Apollo and AdaHessian claim to provide more
accurate second-order estimates than their predecessors, we therefore compare the
calculated batch Hessian diagonal with the approximations generated by Apollo,
AdaHessian, Adam, and AdaBelief across different batch sizes.

3.1 hessian approximization quality

Before comparing the quality of the Hessian approximations provided by the
previously mentioned optimizers, we need to address some additional details.
Recalling their definitions, Adam, AdaBelief, and AdaHessian all use an estimate of the
absolute curvature in their second-moment computations. The diagonal elements of
the Hessian matrix of the loss function consist of the second-order partial derivatives
with respect to each parameter Hii =

∂2L
∂θ2

i
, where L is the loss function and θi is the

i-th parameter. The entries Hii are negative when the loss function is locally concave
with respect to θi and positive when it is locally convex. Consequently, we will
compare the absolute values of the Hessian diagonal elements with the optimizers’
approximations, since they only consider the absolute curvature—that is, they ignore
the sign of the Hessian diagonal entries, as they all use the squared approaximations
in their second moment. To do so, we first calculate the Hessian diagonal for the
current batch using torch.autograd. Since PyTorch does not natively support the
calculation of the Hessian diagonal in a fully vectorized form, we implemented
this by iterating over each gradient element, performing a second backward pass,
and extracting the corresponding second-order derivative. Given that this process is
inherently slow, we limited our investigation to a relatively small CNN model with
13.5K parameters, consisting of two convolutional layers and two fully connected
layers. For training, we used the MNIST dataset, which contains 60,000 images
of handwritten digits, each of size 28 × 28. To measure the similarity between
the approximated Hessian diagonal and the actual batch Hessian diagonal, we
needed a metric that is independent of the magnitude of the vectors. This is crucial
because the scale of the second moments can be adjusted through the learning rate.
Therefore, we utilized the cosine similarity measure, which is defined as follows:

cos(θ) =
A · B
∥A∥∥B∥ =

∑n
i=1 AiBi√

∑n
i=1 A2

i

√
∑n

i=1 B2
i

, A, B ∈ Rn.

This provides a measure of the angle between the two vectors, where cos(θ) = 1
indicates perfect directional alignment, and cos(θ) = 0 indicates orthogonality.
We record the measured cosine similarity and plot its development throughout
the training process. This is done for both batch sizes of 124 and 1024 to observe

39

40 hessian approximization quality and sapollo

whether the increased stochastic variance in the gradient significantly impacts the
quality of the approximation results. In Figures 3.2 and 3.1, we observe the angle
between the approximations and the absolute batch Hessian diagonal for both small
and large batch sizes. For improved visualization, a moving average with a window
size of 10 is applied to the small batch plots. The results indicate that Apollo’s
approximations are much worse than those of the other optimizers across most
layers and for both batch sizes.

Although the approximation quality of Apollo improves significantly with larger
batch sizes, even approaching that of Adam and AdaBelief, it still fails to match their
performance. AdaHessian is able to produces more accurate approximations than
Adam and AdaBelief both in the small batch setting, as well as in the large batch
setting. Finally, we see that AdaBelief performs similarly to Adam, but is able to
provide a noticeably better approximation of the batch Hessian when less noisy
gradient estimates are available. This brings us to the conclusion that, although we
could only evaluate Apollo on a small model, it does not seem to live up to its claim
of providing a better curvature approximation than traditional first-order methods.
AdaHessian, on the other hand, is able to significantly outperform both traditional
first-order methods, as well as Apollo, in terms of curvature approximation. However,
due to the nature of AdaHessian’s stochastic approximation, it will always require
a warm-up period for its approximation to become accurate, as diag(H) = E[z⊙
(Hz)] (see 1.4.3) needs several evaluations of z⊙ (Hz) . We can see this in Figure
3.2, were it starts of with a much higher degree until arriving at better approximates
in later steps.

The good approximation performance of AdaBelief,in the big batch setting, may
be explained by regarding the EMA of the belief term, (gt − mt)2 (see 1.3.7), as
a approximation for the diagonal entries of the gradient variance, as Var(g)ii =

E[(gi − E[gi])
2] g ∈ Rn, i ≤ n. It can be shown that if we model our loss function

as the negative log-likelihood, L(y, x, θ) = − log p(y|x, θ), with y ∈ Rm beeing the
lables of the input x ∈ Rn, then

Var(∇ log p(y|x, θ)) = E[∇2 log p(y|x, θ)] = −E[Hlog p(y|x,θ)] [36]. (3.1)

In this way, the belief term of AdaBelief directly approximates the diagonal entries
of the expected negative Hessian. This might provide a new perspective on the
superior approximation abilities of AdaBelief, as we have not seen this connection
in the literature yet, to the best of our knowledge. Finally, the most interesting
observation arises when we examine Figure 3.3, where the evolution of the loss
is depicted for both batch sizes. We can see that, despite tuning each optimizer
for optimal performance, with Hyperparameter in A.4, AdaHessian is unable to
achieve the same loss as Apollo, even though it is capable of much more accurate
curvature approximations. Apollo on the other hand is able to achive basicly the
same convergence behavior as first-oder methods, although providing much less
accurate curvature approaximations. Additionally, as we observed in the bench-
marks on CIFAR-10 and WMT-14, both AdaHessian and Apollo are able to discover
minima that generalize well. This leads to the hypothesis that the better general-
ization performance of the tested second-order methods may not be solely based
on superior Hessian approximation capabilities, but rather on other mechanisms

3.2 the sapollo optimizer 41

that have yet to be uncovered. We will undermine this oberservation by uncovering
several flaws in Apollo, related to its implementation in the next section. In conclu-
sion, our analysis shows that Apollo is not competitive with standard first-order
methods in terms of curvature approximation ability, at least within the context
of our small testing network. Furthermore, since AdaHessian requires 2 to 3 times
the memory of SGD (see Table 2.3) and due to PyTorch’s current inability to work
with gradient graphs on DDP, training large, distributed models becomes infeasible.
Therefore, one might conclude that the approximation of AdaHessian is unlikely to
find widespread application over existing first-order methods.

0 50 100 150

20

30

40

50

60

conv_layer_0

0 50 100 150

20

30

40

50

60

70

conv_layer_1

0 50 100 150
20

40

60

fc_layer_0

0 50 100 150

20

40

60

fc_layer_1

AdaBelief Adam AdaHessian Apollo

Figure 3.1: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a big batch (1028

samples). Optimizer updates are denoted on the x-axis. Note that these results
represent only the Hessian diagonals for the network’s weights. For the corre-
sponding analysis on biases, please refer to Figure A.3.

3.2 the sapollo optimizer

As we noted in the previous section, the approximation quality of the batch Hessian
in Apollo is not competitive with existing first-order methods. In this section, we will
examine several flaws arising from the formulation and implementation of the Apollo
algorithm (see Algorithm 1.4.4). We will then address both theoretical and practical

42 hessian approximization quality and sapollo

0 500 1,000 1,500

20

40

60

80

conv_layer_0

0 500 1,000 1,500

30

40

50

60

conv_layer_1

0 500 1,000 1,500

40

60

80

fc_layer_0

0 500 1,000 1,500

20

40

60

80

fc_layer_1

AdaBelief Adam AdaHessian Apollo

Figure 3.2: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a small batch
(124 samples). Optimizer updates are denoted on the x-axis. Note that these
results represent only the Hessian diagonals for the network’s weights. For the
corresponding analysis on biases, please refer to Figure A.2.

0 500 1,000 1,500

−3

−2

−1

0

1

Log Loss (124 samples a batch)

0 50 100 150

−2

−1

0

1

Log Loss (1028 samples a batch)
AdaBelief Adam AdaHessian Apollo

Figure 3.3: The log loss of the model during training, y-axis, after each update step, x-axis,
while training with small- (left) and big batches (right) of training data.

3.2 the sapollo optimizer 43

issues, aiming to resolve these errors in the algorithm’s design and implementation
and comparing the results. We begin by demonstrating that the clamping operation
in Apollo can lead to curvature information beeing lost, which causes the algorithm
to behave similarly to SGD with momentum, thereby explaining its poor curvature
approximation abilities.
For this we look at line 9 in 1.4.4. Here we can see that all values of Bt with |Bt| ≤ σ

are clamped, losing their curvature information.
This implies that the clamping effect, due to the choice of σ in Apollo, cannot be

rescaled by adjusting the learning rate. This is expected, as the clamping operation
is inherently non-linear. In practice, this results in small values being capped
by σ, which effectively leads to a rescaling of the learning rate by a factor of 1

σ ,
disregarding any curvature information at that point. Thus, the higher the choice of
σ, the more similar Apollo’s update step becomes to plain SGD with momentum.
This phenomenon occurred in Figure 3.1, where most values of B were much
smaller than the chosen σ, leading to a loss of curvature information. Note that in
the standard implementation of Apollo, σ cannot be choosen as a hyperparamter, as
it is hardcoded in the optimizer. To gain intuition for the small values of B from a
theoretical perspective, we will again formulate the update rule of B, with

Bt+1 = Bt −
dT

t (∆mt+1)− (d2
t)

TBt

(∥dt∥4 + ϵ)4 · d2
t (3.2)

= Bt −
∑n

j dt,j∆mt+1,j −∑n
j d2

t,jBt,j

(∥dt∥4 + ϵ)4 · d2
t . (3.3)

We now substitute dt =
mt
γ , γ = max(|Bt|, σ), and obtain the following for the

k-th entry of Bt

∆Bt+1,k =

(
−

n

∑
j

mt,j

γj
∆mt+1,j −

n

∑
j

m2
t,j

γ2
j

Bt,j

)
·

m2
t,k

γ2
k

(
∥mt

γ
∥4 + ϵ

)−4

=

(
n

∑
j
−

mt,j∆mt+1,jm2
t,k

γjγ
2
k

−
m2

t,jm
2
t,k

γ2
j γ2

k
Bt,j

)(
∥mt

γ
∥4 + ϵ

)−4

≈
(

n

∑
j
−

mt,j∆mt+1,jm2
t,k

γjγ
2
k

−
m2

t,jm
2
t,k

γ2
j γ2

k
Bt,j

)(
∥mt

γ
∥4

)−4

= ∆B̂t+1,k.

We will now examine the state of the algorithm in a situation where Bt is small, to
observe how the updates behave in such a case. Specifically, we consider Bt,k ≤ σ,
and thus set γ = σ, which gives us the following expression

∆B̂t+1,k =

(
n

∑
j=1
−

mt,j∆mt+1,jm2
t,k

σ3 −
m2

t,jm
2
t,k

σ4 Bt,j

)
σ−4

(
n

∑
j=1

m4
t,j

)−1

=

(
n

∑
j=1
−σmt,j∆mt+1,jm2

t,k −m2
t,jm

2
t,kBt,j

)(
n

∑
j=1

m4
t,j

)−1

.

44 hessian approximization quality and sapollo

As ∆mt+1 is typically smaller than the gradients themselves, and when mt,k ≪ mt,j,
the updates to B can become very small. Due to the stochastic nature of the
gradients, where the sign of updates may fluctuate from batch to batch, B is unable
to accumulate significant values. Consequently, the values of B remain small and
are clamped to σ before gradient preconditioning, resulting in a loss of crucial
curvature information.

As mentioned earlier, there are also multiple issues in the implementation of
Apollo (see 3.4), which deviate from its theoretical formulation. In line 5, we see
the implementation of ∆mt+1. However, delta_grad is not the true difference
between the current and previous gradient, but rather the difference between the
current gradient and exp_avg_grad, where exp_avg_grad is not the EMA of the
gradient, but a recursive form of exp_avg_gradt+1 = (1− β)(grad− exp_avg_gradt)

(see line 9). Additionally, this value is used as a replacement for the EMA of
the gradient in line 19, where it is preconditioned using the Hessian diagonal
approximation. Furthermore, the bias correction in line 9 does not follow the
standard approach for updating an EMA (see Section 1.3.6). We suspect that the
authors may have incorrectly updated exp_avg_grad with delta_grad instead of
grad, as doing so would align with the theoretical formulation, aside from the
incorrect bias correction.

To address the identified issues, we propose a modified version of the Apollo opti-
mizer, named SApollo (Smoothed Apollo), which adheres to its theoretical formulation.
Additionally, we incorporate an Exponential Moving Average (EMA) of the Hessian
diagonal approximations, denoted as B, as suggested by the authors of Apollo as an
interesting direction for future research [25]. Figure 3.4 illustrates our implementa-
tion. We calculate exp_avg_grad as a properly implemented EMA of the gradient
and use it in the preconditioning step. Furthermore, we calculate delta_grad, by
capturing the difference between the current gradient and it’s EMA, similar to
AdaBelief (see 1.3.7). The Hessian diagonal approximation B is implemented as
a moving average of the updates derived from Eq. 1.49. Note that this does not
require additional memory, as we simply replace the non-EMA version with the
EMA version of B. As we identified the clamping operation to be problematic for
small values, we instead add σ to the absolute values of B (line 21) if they are
smaller than σ. This means we are using σ as a dampening factor when values
of B are very small. Although this can lead to a learning rate decrease of at most
twice the amount of Apollo, it is able to capture important curvature information.
To tune σ in practice, SApollo introduces σ as a hyperparameter, contrary to Apollo,
where σ is hardcoded in the optimizer. As we observed that the updates of B can
become very small, a high σ may therefore lead to poor Hessian approximations.
In our performance evaluation, we use σ = 0.0001 (lr=0.001), while for the task of
Hessian approximation, we use σ = 0.01 for optimal comparability with Apollo. It
still needs to be determined how low the value of σ should optimally be in practice.
As this might vary across different model architectures, we believe introducing σ as
a hyperparameter is a good choice. Figure 3.5 shows the results of the Hessian ap-
proximation. Note that these results only show the approximation quality regarding
the weights, for the biases we refer to A.4. While SApollo is not yet competitive with
first-order methods, it is on par or performs slightly better than Apollo especially in

3.2 the sapollo optimizer 45

later layers. As said earlier, we hypothesize that decreasing the value of σ could
further improve the quality of the Hessian approximation, as σ = 0.01 may be
too large, making it an interesting direction for future research. In Figure 3.6, we
present the performance comparison between SApollo and Apollo(W). The figure
illustrates that SApollo decreases the loss much faster than both ApolloW and Apollo.
Although SApollo performs better with σ = 0.0001 on this dataset, it remains to be
determined whether this improvement can solely be attributed to the correction of
the mentioned implementation mistakes, or if Apollo(W) would perform on par with
or better than SApollo when its σ is set to similar values. Furthermore, as Apollo [25]
states, the reason for not introducing σ as a hyperparameter is that the learning
rate and σ are coupled. This means that if the ratio between the learning rate and σ

remains the same across runs, the optimization trajectory shall also be the same
(see Theorem 1 [25]). To test this in practice, we chose lr= 10−3 and σ = 10−4 for
SApolloW and applied the same ratio of lr and σ to Apollo(W). Since 10−3

10−4 = 10, we

set lr= 0.1 for Apollo(W), as 10−3

10−4 = 10 = 10−1

10−2 (see A.5). In our plot, we refer to
these results as Apollo(W)-H-LR. As we can see, the performance of Apollo(W)-H-LR
is significantly worse when compared to the other versions of the optimizer. This
indicates that the coupling of lr and σ does not hold in practice, as the optimization
trajectory between Apollo(W) and Apollo(W)-H-LR is not the same, emphasizing the
need to introduce σ as a hyperparameter.

Regarding memory optimization, since d_p solely relies on values that are already
stored, one could consider recomputing it at the start of each iteration using the not
yet updated values of exp_avg_grad and B. This would reduce (S)Apollo’s memory
requirements to those of popular first-order methods, such as Adam, which would
make it interesting for future investigation.

46 hessian approximization quality and sapollo

1 (...)

2 bias_correction1 = 1 - beta1 ** state['step']

3 bias_correction2 = 1 - beta2 ** state['step']

4

5 # calc the diff grad

6 delta_grad = grad - (exp_avg_grad/bias_correction1)

7 sigma = 0.01

8 # Update the running average grad

9 exp_avg_grad.mul_(beta1).add_(grad, alpha=1 - beta1)

10

11 denom = d_p.norm(p=4).add(eps)

12 d_p.div_(denom)

13 v_sq = d_p.mul(d_p)

14 B_hat = B / bias_correction2

15 delta = delta_grad.div_(denom).mul_(d_p).sum().mul(-1)

16 - B_hat.mul(v_sq).sum()

17 # Update B

18 B.mul_(beta2).addcmul_(v_sq, delta, value=1 - beta2)

19 B_hat = B / bias_correction2

20 # calc direction of parameter updates

21 denom = B_hat.abs()

22 denom = torch.where(denom,denom < sigma,denom.add_(sigma),denom)

23 d_p.copy_((exp_avg_grad/bias_correction1).div(denom))

24 # Perform step weight decay

25 (...)

26 p.add_(d_p, alpha=-curr_lr)

1 (...)

2 bias_correction = 1 - beta ** state['step']

3 alpha = (1 - beta) / bias_correction

4 # calc the diff grad

5 delta_grad = grad - exp_avg_grad

6 rebound = 0.01

7 eps = eps / rebound

8 # Update the running average grad

9 exp_avg_grad.add_(delta_grad, alpha=alpha)

10 denom = d_p.norm(p=4).add(eps)

11 d_p.div_(denom)

12 v_sq = d_p.mul(d_p)

13 delta = delta_grad.div_(denom).mul_(d_p).sum().mul(-alpha)

14 - B.mul(v_sq).sum()

15 # Update B

16 B.addcmul_(v_sq, delta)

17 # calc direction of parameter updates

18 denom = B.abs().clamp_(min=rebound)

19 d_p.copy_(exp_avg_grad.div(denom))

20 # Perform step weight decay

21 (...)

22 p.add_(d_p, alpha=-curr_lr)

Figure 3.4: The implementation of SApollo(top) and Apollo(bottom) in PyTorch

3.2 the sapollo optimizer 47

0 200 400 600 800 1,0001,2001,400

10

20

30

40

50

conv_layer_0

0 200 400 600 800 1,0001,2001,400

30

40

50

60

70

conv_layer_1

0 200 400 600 800 1,0001,2001,400

40

60

80

fc_layer_0

0 200 400 600 800 1,0001,2001,400

30

40

50

60

70

fc_layer_1

AdaBelief Adam AdaHessian Apollo SApollo

Figure 3.5: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a small batch (124

samples). Optimizer updates are denoted on the x-axis.

0 50 100 150
0.2

0.4

0.6

0.8

1

Epochs

Training Accuracy (milestone)

0 50 100 150

0.4

0.6

0.8

Epochs

Test Accuracy (milestone)

0 50 100 150

−8

−6

−4

−2

0

Epochs

Log Train Loss (milestone)

0 50 100 150

−1

−0.5

0

0.5

1

1.5

Epochs

Log Test Loss (milestone)

Apollo ApolloW SApollo Apollo-H-LR ApolloW-H-LR

Figure 3.6: Evaluation of SApollo on CIFAR-10 using ResNet-110 with the cosine annealing
learning rate scheduler.

4
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

In this work, we examined Apollo and AdaHessian, two recent advancements in
the field of second-order optimization for neural network training. We evaluated
both optimizers in terms of performance on common datasets and resource con-
sumption, compared to first-order methods. While AdaHessian demonstrated strong
performance in approximating the batch Hessian diagonal, its significant resource
requirements and the need for derivative graph creation in PyTorch make it im-
practical for non-academic use. On the other hand, Apollo, though able to perform
similarly to AdaHessian in our experiments, exhibited a significant limitation in
its Hessian approximation due to its clamping operation, which loses curvature
information when values fall below σ. Furthermore, we identified several imple-
mentation flaws in Apollo, which we addressed in our modified version, SApollo.
In addition to fixing these issues, SApollo introduces a smoothed version of the
Hessian approximation, B, to reduce the influence of stochastic noise. Instead of
clamping values below σ, SApollo adds σ to approximations that fall below this
threshold, ensuring that small approximation information is retained. Although
this approach led to slightly improved Hessian approximation accuracy and better
convergence performance on the CIFAR-10 dataset, it remains to be determined
whether these performance benefits can be solely attributed to the correction of
implementation errors in Apollo, or if assigning similarly small values for σ—which
is not tunable as a hyperparameter in Apollo—could yield the same or even better
performance. Furthermore, we determined that the coupling between the learning
rate and σ does not hold in practice. This means that we cannot adjust the influence
of σ by simply tuning the learning rate in Apollo, making the introduction of σ as a
hyperparameter a necessity.

48

A
A P P E N D I X

a.1 appendix

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Epochs

Polynom. Training Accuracy (cosine)

0 50 100 150

0

0.2

0.4

0.6

Epochs

Polynom. Test Accuracy (cosine)

0 50 100 150
−8

−6

−4

−2

0

Epochs

Log Train Loss (cosine)

0 50 100 150

−0.5

0

0.5

1

Epochs

Log Test Loss (cosine)

Apollo Adam AdaBelief RMSProp
ApolloW SGD AdaHessian AdamW

Figure A.1: Evaluation of optimizers on CIFAR-10 using ResNet-110 with the cosine annealing
learning rate scheduler, where hyperparameters are held constant across all
optimizers.For better visualization we applied a polynomial transformation,
with x̂ = xα and α = 5, for every x ∈ D in the output data D.

49

50 appendix

0 500 1,000 1,500

20

40

60

80

conv_layer_0

0 500 1,000 1,500

10

20

30

40

50

conv_layer_1

0 500 1,000 1,500

20

30

40

50

60

fc_layer_0

0 500 1,000 1,500

10

20

30

40

fc_layer_1

AdaBelief Adam AdaHessian Apollo

Figure A.2: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a small batch (124

samples). Optimizer updates are denoted on the x-axis. Note that these results
represent only the Hessian diagonals for the network’s biases.

Table A.1: Hyperparameter settings for CIFAR-10. Values in parentheses indicate configura-
tions used for individual best-case evaluations.

Learning rate Weight decay Beta Epsilon Warmup

SGD 1× 10−3 2.5× 10−4 (0.9) - 0

Adam 1× 10−3 2.5× 10−4 (0.9,0.999) 1× 10−08
0

AdamW 1× 10−3 2.5× 10−4 (0.025) (0.9,0.999) 1× 10−08
0

AdaBelief 1× 10−3 2.5× 10−4 (0.025) (0.9,0.999) 1× 10−08
0

RMSProp 1× 10−3 2.5× 10−4 (0.99) 1× 10−08
0

Apollo 1× 10−3 (0.01) 2.5× 10−4 (0.9) 1× 10−4
0 (500)

ApolloW 1× 10−3 (0.01) 2.5× 10−4 (0.025) (0.9) 1× 10−4
0 (500)

AdaHessian 1× 10−3 (0.15) 2.5× 10−4 (0.001) (0.9,0.999) 1× 10−4
0 (500)

A.1 appendix 51

0 50 100 150

20

40

60

conv_layer_0

0 50 100 150

10

20

30

40

50

conv_layer_1

0 50 100 150

10

20

30

40

50

60

fc_layer_0

0 50 100 150

10

20

30

40

fc_layer_1

AdaBelief Adam AdaHessian Apollo

Figure A.3: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a small batch (124

samples). Optimizer updates are denoted on the x-axis. Note that these results
represent only the Hessian diagonals for the network’s biases.

Table A.2: Hyperparameter settings for TinyImageNet. Values in parentheses indicate con-
figurations used for individual best-case evaluations.

Learning rate Weight decay Beta Epsilon Warmup

SGD 1× 10−3 1× 10−4 (0.9) - 0

Adam 1× 10−3 1× 10−4 (0.9,0.999) 1× 10−08
0

AdamW 1× 10−3 1× 10−4(0.01) (0.9,0.999) 1× 10−08
0

AdaBelief 1× 10−3 1× 10−4(0.01) (0.9,0.999) 1× 10−08
0

RMSProp 1× 10−3 1× 10−4 (0.99) 1× 10−08
0

Apollo 1× 10−3 (0.01) 1× 10−4 (0.9) 1× 10−4
0 (500)

ApolloW 1× 10−3 (0.01) 1× 10−4 (0.01) (0.9) 1× 10−4
0 (500)

AdaHessian 1× 10−3 (0.15) 1× 10−4 (0.001) (0.9,0.999) 1× 10−4
0 (500)

52 appendix

0 200 400 600 800 1,0001,2001,400

20

40

60

conv_layer_0

0 200 400 600 800 1,0001,2001,400

10

20

30

40

50

60

conv_layer_1

0 200 400 600 800 1,0001,2001,400

20

30

40

50

fc_layer_0

0 200 400 600 800 1,0001,2001,400

10

20

30

fc_layer_1

AdaBelief Adam AdaHessian Apollo SApollo

Figure A.4: The cosine similarity (in degrees), y-axis, between the calculated batch Hessian
diagonal and the corresponding optimizer approximations on a small batch (124

samples). Optimizer updates are denoted on the x-axis. Note that these results
represent only the Hessian diagonals for the network’s biases.

Table A.3: Hyperparameter settings for WMT-14.

Learning rate Weight decay Beta Epsilon Warmup

SGD 1× 10−3 1× 10−4 (0.9) - 0

Adam 1× 10−3
0 (0.9,0.98) 1× 10−09

4000

AdamW 1× 10−3 1× 10−4 (0.9,0.98) 1× 10−09
4000

AdaBelief 1× 10−3 1× 10−4 (0.9,0.98) 1× 10−09
4000

RMSProp - - - - -

Apollo 0.04 0 (0.9) 1× 10−4
4000

ApolloW 0.04 1× 10−8 (0.9) 1× 10−4
4000

AdaHessian 0.1 0 (0.9,0.98) 1× 10−4
4000

A.1 appendix 53

Table A.4: Hyperparameter settings for curvature approximation quality. Values in paren-
theses are used in the SApollo comparison

Learning rate Weight decay Beta Epsilon

Adam 1× 10−2
0 (0.9,0.999) 1× 10−08

AdaBelief 1× 10−2
0 (0.9,0.999) 1× 10−08

Apollo 3× 10−3 (0.01) 0 (0.9) 1× 10−4

SApollo 0.01 0 (0.9,0.999) 1× 10−4

AdaHessian 2× 10−1
0 (0.9,0.999) 1× 10−4

Table A.5: Hyperparameter settings for comparison between SApollo and Apollo

Learning rate σ Weight decay Beta Epsilon

Apollo 0.01 0.01 0.00025 (0.9) 1× 10−4

ApolloW 0.01 0.01 0.025 (0.9) 1× 10−4

SApollo 0.001 0.0001 0.025 (0.9,0.999) 1× 10−8

Apollo-H-LR 0.1 0.01 0.00025 (0.9) 1× 10−4

ApolloW-H-LR 0.1 0.01 0.025 (0.9) 1× 10−4

B I B L I O G R A P H Y

[1] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer.
Scalable Second Order Optimization for Deep Learning. 2021. arXiv: 2002.09018
[cs.LG].

[2] Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus
Lichtenegger, and Hellmuth Stachel. Mathematik. 2nd ed. Heidelberg: Spek-
trum Akademischer Verlag, 2011, p. 1506. isbn: 978-3-8274-2347-4.

[3] David Bachman. Advanced Calculus Demystified. McGraw-Hill Education, 2007.
isbn: 978-0-07-147217-3.

[4] C. Bekas, E. Kokiopoulou, and Y. Saad. “An estimator for the diagonal of
a matrix.” In: Applied Numerical Mathematics 57.11 (2007). Numerical Algo-
rithms, Parallelism and Applications (2), pp. 1214–1229. issn: 0168-9274.
doi: https : / / doi . org / 10 . 1016 / j . apnum . 2007 . 01 . 003. url: https :

//www.sciencedirect.com/science/article/pii/S0168927407000244.

[5] Christopher M. Bishop. Exact Calculation of the Hessian Matrix for the Mul-
tilayer Perceptron. Tech. rep. Accessed: 2024-05-27. Neural Computing Re-
search Group, Aston University, 1992. url: https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/bishop-hessian-nc-92.pdf.

[6] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[7] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization Methods for
Large-Scale Machine Learning. 2018. arXiv: 1606.04838 [stat.ML].

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge,
UK: Cambridge University Press, 2004. isbn: 9780521833783.

[9] Charles George Broyden. “Quasi-Newton methods and their application to
function minimization.” In: Mathematics of Computation 21.99 (1967), pp. 368–
381.

[10] Charles George Broyden. “The convergence of a class of double-rank min-
imization algorithms 1. general considerations.” In: IMA Journal of Applied
Mathematics 6.1 (1970), pp. 76–90.

[11] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Under-
standing the Difficulty of Training Transformers. 2020. arXiv: 2004.08249 [cs.LG].
url: https://ar5iv.labs.arxiv.org/html/2004.08249.

[12] Dive into Deep Learning. Adam. Accessed: 2024-06-10. D2L.ai, 2023.

[13] Wolfgang Ertel. Grundkurs Künstliche Intelligenz: Eine praxisorientierte Ein-
führung. German. 5th ed. Springer Vieweg, 2021. isbn: 978-3-658-33723-5.

[14] Roger Fletcher and Michael JD Powell. “A rapidly convergent descent method
for minimization.” In: The Computer Journal 6.2 (1963), pp. 163–168.

[15] Guillaume Garrigos and Robert M. Gower. Handbook of Convergence Theorems
for (Stochastic) Gradient Methods. 2024. arXiv: 2301.11235 [math.OC].

55

https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/2002.09018
https://doi.org/https://doi.org/10.1016/j.apnum.2007.01.003
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-hessian-nc-92.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-hessian-nc-92.pdf
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2004.08249
https://ar5iv.labs.arxiv.org/html/2004.08249
https://arxiv.org/abs/2301.11235

56 bibliography

[16] GeoffreyHinton. Neural Networks for Machine Learning. Tech. rep. Accessed:
2024-06-04. Neural Computing Research Group, Aston University, 2012. url:
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[18] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger.
Deep Networks with Stochastic Depth. https://www.researchgate.net/figure/
Comparison-of-ResNets-with-110-and-1202-layers-When-trained-with-

stochastic-depth-the_fig4_301879329. [Figure] Accessed 16 Jul 2024. 2016.

[19] Michael F Hutchinson. “A stochastic estimator of the trace of the influence
matrix for Laplacian smoothing splines.” In: Communications in Statistics-
Simulation and Computation 19.2 (1990), pp. 433–450. doi: 10.1080/03610919008812866.

[20] Ph.D. Jacob Murel and Eda Kavlakoglu. “What Is Regularization?” In: (2023).
Accessed: 2024-05-27. url: https://www.ibm.com/topics/regularization.

[21] Rohan Kashyap. A survey of deep learning optimizers – first and second order
methods. 2023. arXiv: 2211.15596 [cs.LG].

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[23] Ilya Loshchilov and Frank Hutter. “Fixing Weight Decay Regularization in
Adam.” In: (2017). arXiv: 1711.05101. url: http://arxiv.org/abs/1711.
05101.

[24] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG]. url: https://arxiv.org/abs/1711.05101.

[25] Xuezhe Ma. Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method
for Nonconvex Stochastic Optimization. 2021. arXiv: 2009.13586 [cs.LG]. url:
https://arxiv.org/abs/2009.13586.

[26] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas
Immanent in Nervous Activity.” In: The Bulletin of Mathematical Biophysics 5.4
(1943), pp. 115–133. doi: 10.1007/BF02478259.

[27] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
Boltzmann machines.” In: Proceedings of the 27th international conference on
machine learning (ICML-10). 2010, pp. 807–814.

[28] Jorge Nocedal and Stephen Wright. Numerical Optimization. 2nd. Springer,
2006. isbn: 978-0-387-30303-1.

[29] Barak A. Pearlmutter. “Fast exact multiplication by the Hessian.” In: Neural
Computation 6.1 (1994), pp. 147–160. doi: 10.1162/neco.1994.6.1.147. url:
https://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf.

[30] Boris T. Polyak. “Some methods of speeding up the convergence of iteration
methods.” In: USSR Computational Mathematics and Mathematical Physics 4.5
(1964), pp. 1–17.

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.researchgate.net/figure/Comparison-of-ResNets-with-110-and-1202-layers-When-trained-with-stochastic-depth-the_fig4_301879329
https://www.researchgate.net/figure/Comparison-of-ResNets-with-110-and-1202-layers-When-trained-with-stochastic-depth-the_fig4_301879329
https://www.researchgate.net/figure/Comparison-of-ResNets-with-110-and-1202-layers-When-trained-with-stochastic-depth-the_fig4_301879329
https://doi.org/10.1080/03610919008812866
https://www.ibm.com/topics/regularization
https://arxiv.org/abs/2211.15596
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2009.13586
https://arxiv.org/abs/2009.13586
https://doi.org/10.1007/BF02478259
https://doi.org/10.1162/neco.1994.6.1.147
https://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf

bibliography 57

[31] PyTorch. torch.nn.DataParallel. https://pytorch.org/docs/stable/generated/
torch.nn.DataParallel.html. Accessed: 2024-07-01. 2023.

[32] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing representations by back-propagating errors.” In: Nature 323.6088 (1986),
pp. 533–536.

[33] Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

[34] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A Survey of Optimization
Methods from a Machine Learning Perspective. 2019. arXiv: 1906.06821 [cs.LG].

[35] Fred E. Szabo. “S.” In: The Linear Algebra Survival Guide. Ed. by Fred E. Szabo.
Boston: Academic Press, 2015, pp. 320–377. isbn: 978-0-12-409520-5. doi:
https://doi.org/10.1016/B978-0-12-409520-5.50026-6. url: https:
//www.sciencedirect.com/science/article/pii/B9780124095205500266.

[36] Jake Tae. Fisher Information and Its Applications. Accessed: 2024-09-13. 2021.
url: https://jaketae.github.io/study/fisher/.

[37] Tiny ImageNet Dataset. Accessed: 2024-07-06. 2023. url: https://paperswithcode.
com/dataset/tiny-imagenet.

[38] Marc Toussaint. Gradient Descent - Algorithm, History, and Applications. https:
//www.user.tu- berlin.de/mtoussai/notes/gradientDescent.pdf. Ac-
cessed: 2024-05-08. 2014.

[39] Stanford University. Optimization: Stochastic Gradient Descent. http://deeplearning.
stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/.
Accessed: 2024-05-08.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/1706.03762.

[41] X. Wang. Optimization Basics. Lecture slides. Accessed: [Insert access date
here]. 2021. url: https://www.stat.purdue.edu/~wang4094/resources/
slides/2021_spring_DL_meeting_01_opt_basics.pdf.

[42] Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad: Learn the Learning Rate
in Gradient Descent. 2020. arXiv: 1803.02865 [stat.ML].

[43] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and
Michael W. Mahoney. ADAHESSIAN: An Adaptive Second Order Optimizer for
Machine Learning. 2021. arXiv: 2006.00719 [cs.LG].

[44] M. Zhu, John Lawrence Nazareth, and Henry Wolkowicz. “The Quasi-Cauchy
Relation and Diagonal Updating.” In: SIAM J. Optim. 9 (1999), pp. 1192–1204.
url: https://api.semanticscholar.org/CorpusID:949459.

[45] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek,
Xenophon Papademetris, and James S. Duncan. AdaBelief Optimizer: Adapting
Stepsizes by the Belief in Observed Gradients. 2020. arXiv: 2010.07468 [cs.LG].
url: https://arxiv.org/abs/2010.07468.

https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
https://arxiv.org/abs/1906.06821
https://doi.org/https://doi.org/10.1016/B978-0-12-409520-5.50026-6
https://www.sciencedirect.com/science/article/pii/B9780124095205500266
https://www.sciencedirect.com/science/article/pii/B9780124095205500266
https://jaketae.github.io/study/fisher/
https://paperswithcode.com/dataset/tiny-imagenet
https://paperswithcode.com/dataset/tiny-imagenet
https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf
https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
http://deeplearning.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.stat.purdue.edu/~wang4094/resources/slides/2021_spring_DL_meeting_01_opt_basics.pdf
https://www.stat.purdue.edu/~wang4094/resources/slides/2021_spring_DL_meeting_01_opt_basics.pdf
https://arxiv.org/abs/1803.02865
https://arxiv.org/abs/2006.00719
https://api.semanticscholar.org/CorpusID:949459
https://arxiv.org/abs/2010.07468
https://arxiv.org/abs/2010.07468

58 bibliography

[46] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek,
Xenophon Papademetris, and James S. Duncan. “AdaBelief Optimizer: Adapt-
ing Stepsizes by the Belief in Observed Gradients.” In: Advances in Neu-
ral Information Processing Systems (NeurIPS). 2020. url: https://juntang-
zhuang.github.io/adabelief/.

https://juntang-zhuang.github.io/adabelief/
https://juntang-zhuang.github.io/adabelief/

D E C L A R AT I O N

I hereby certify that I, have independently authored the above-mentioned work and
have not used any sources or aids other than those indicated, and have properly
marked all quotations. I have used a large language model (LLM) solely for purposes
of formulation and grammar

Bonn, October 2024

Jan Niclas Hardtke

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	1 Theoretical foundations
	1.1 Foundations of Differential Calculus
	1.1.1 Derivatives for Functions of a Single Variable
	1.1.2 Partial Derivatives
	1.1.3 The Gradient
	1.1.4 The Jacobian Matrix
	1.1.5 The Hessian Matrix

	1.2 Introduction to Optimization
	1.3 First-order Optimization Algorithms
	1.3.1 Gradient Descent
	1.3.2 Empirical Risk Minimization (ERM) bottou2018optimization
	1.3.3 Stochastic Gradient Descent stanfordSGD
	1.3.4 Momentum Goodfellow-et-al-2016
	1.3.5 RMSProp Goodfellow-et-al-2016
	1.3.6 Adam kingma2017adam
	1.3.7 AdaBelief zhuang2020adabeliefoptimizeradaptingstepsizes

	1.4 Second-order Optimization Algorithms
	1.4.1 The Newton method
	1.4.2 DFP & BFGS nocedal2006numerical
	1.4.3 AdaHessian yao2021adahessian
	1.4.4 Apollo apollo

	1.5 Introduction to artificial Neural Networks GrundkursAI
	1.5.1 The artificial Neuron GrundkursAI
	1.5.2 The Multi-Layer Perceptron (MLP)Goodfellow-et-al-2016
	1.5.3 Training of Neural Networks Goodfellow-et-al-2016
	1.5.4 Decoupled Weight Decay Loshchilov2017FixingWD
	1.5.5 Exact Calculation of the Hessian Matrix for MLPs Bishop1992

	2 Numerical Evaluations
	2.1 Overview of Software and Tools Used
	2.2 Image Classification
	2.2.1 CIFAR-10
	2.2.2 Tiny ImageNet

	2.3 Machine Translation
	2.3.1 WMT-14

	3 Hessian Approximization Quality and SApollo
	3.1 Hessian Approximization Quality
	3.2 The SApollo Optimizer

	4 Conclusion and Future Directions
	A Appendix
	A.1 Appendix

	Declaration

